Task 9: Structure-based mutation analysis

From Bioinformatikpedia
Revision as of 18:51, 26 August 2013 by Betza (talk | contribs)

<css> table.colBasic2 { margin-left: auto; margin-right: auto; border: 1px solid black; border-collapse:collapse; width: 40%; }

.colBasic2 th,td { padding: 3px; border: 1px solid black; }

.colBasic2 td { text-align:left; }

/* for orange try #ff7f00 and #ffaa56 for blue try #005fbf and #aad4ff

maria's style blue: #adceff grey: #efefef

  • /

.colBasic2 tr th { background-color:#efefef; color: black;} .colBasic2 tr:first-child th { background-color:#adceff; color:black;} </css>

Lab_Journal_Hemochromatosis_Task9

Structure Selection

PDB ID Res [A] R-value (obs) pH missing residues coverage
1A6Z 2.60 2.33 6.5 1-3 83.4%
1DE4 2.80 2.31 8.0 1-3 83.4%

From the two available structures, we chose 1A6Z, because it has a slightly higher resolution and a nearly identical resolution compared to 1DE4. On the downside, 1A6Z was resolved at a pH value of 6.5, which is more distant to the physiological pH than the resolution pH of 1DE4. 1A6Z was chosen nevertheless, because it was used in all previous tasks, in order to keep consistency.

Mutations

Mutation Disease causing ?
Val53Met Yes
His63Asp Yes
Met97Ile No
Thr217Ile No
Cys282Tyr Yes

<figtable id="mut_overview">

Mut 1 lab.png
Mut 2 lab.png

</figtable>

Structure Mutation using SCWRL

Val53Met

<figtable id="53_mut">

53 wt.png
53 mut.png
Figure 2: Wild type(grey) and mutant(red) residues for position 53.

</figtable> Figure 2 shows that the mutation to Methionin does not change the polar contacts of the residue. But Methionin extends further into the binding pocket than Valin, which might disturb the structure of the binding pocket and inhibit the binding process.

His63Asp

<figtable id="63_mut">

63 wt.png
63 mut.png
Figure 3: Wild type (grey) and mutant (red) residues for position 63.

Regarding the polar contacts of residue 63, there is no change, because both variants do not exhibit polar interactions (Figure 3). Also, the mutation lies in a loop region and does not disturb an ordered secondary structure. But nevertheless, the mutation is disease causing, which might be due to the fact that the loop where it is located is still part of the binding interface to ferritin and that the change from an aromatic, mainly uncharged residue to a negatively charged residue disturbs this interface.

Met97Ile

<figtable id="97_mut">

97 wt.png
97 mut.png
Figure 4: Wild type(grey) and mutant(red) residues for position 97.

Both variants show the same polar contacts, which are only the intra-backbone hydrogen bonds that stabilize the alpha helix (Figure 4). The isoleucin is slightly smaller than methione, but the residue stays uncharged and nonpolar and thus, although it is located directly at the binding interface to ferritin, the mutatiion is neutral.


T217I

<figtable id="217_mut">

217 wt.png
217 mut.png
Figure 5: Wild type(grey) and mutant(red) residues for position 217.

While the change from a polar to a non-polar side chain reduces the number of hydrogen bonds at this loop and thus the stability of the loop (Figure 5), it is not enough to affect the function of the protein, because the loop is not near a binding interface or an essential structural part.

C282Y

<figtable id="282_mut">

282 wt.png
282 mut.png
282 clash.png
282 mut2.png
Figure 6: Wild type(grey) and mutant(red) residues for position 282. The disulfide bridge binding partner of C282 is shown in white.

Although for this mutation, the polar contacts to the neighbouring beta sheet remain unchanged (Figure 6), it is evident why this mutation is the major cause for hemochromatosis. The replacement of cysteine with tyrosine causes a break of the disulfide bond that connects the two beta sheets of the Ig c1-set domain. Consequently, the structure of this domain is destabilized, which probably inhibits the formation of the HFE,ferritin,beta-micorglobulin complex. It is also noteworthy, that scwrl does not change the conformation of the cysteine binding partner, resulting in a clash of tyrosine and cysteine.

Comparison of SCWRL and FoldX

<figtable id="fx_scwrl" style="border-width: 0px">

V53M: Practically, there is no difference between the rotamers generated by the two programs.
H63D: In this case, there is also nearly no difference between the placements of the programs.
M97I: As in the two cases before, the results do not differ significantly.
217 scwrl.png
217 fx.png
282 scwrl.png
282 foldx.png
282 both.png
Figure 7: Comparison between mutations performed by SCWRL(green) and foldx(cyan).

Val53Met

His63Asp

Met97Ile

Thr217Ile

Cys282Tyr

Minimisation

Method Mutation Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
WT - -3724.15 -5003.51 -5118.38 -5198.32 -5301.44
scwrl V53M -5022.73 -5295.74 -5154.72 -5272.51 -5260.4
H63D -4940.57 -5212.88 -5084.45 -5190.74 -5189.68
M97I -5025.31 -5291.5 -5146.59 -5247.72 -5246.2
T217I -5037.72 -5307.97 -5171.54 -5277.0 -5269.32
C282Y -2596.78 -5107.77 -5037.12 -5159.07 -5191.73
foldx V53M -5323.9 -5544.42 -5450.03 -5377.19 -5436.94
H63D -5284.49 -5493.82 -5437.69 -5364.69 -5454.72
M97I -5264.67 -5482.17 -5405.78 -5343.15 -5255.85
T217I -5275.89 -5492.39 -5416.59 -5343.98 -5431.55
C282Y -3376.95 -5217.05 -5194.04 -5231.15 -5290.49