Difference between revisions of "Structure-based mutation analysis (Phenylketonuria)"

From Bioinformatikpedia
(Visualisation of used mutations)
(Visualisation of used mutations)
Line 93: Line 93:
 
===Gln172His===
 
===Gln172His===
 
<figure id="Q172H">
 
<figure id="Q172H">
[[File:A259V.png|thumb|right|'''<caption>''' Mutation of glutamine (yellow) to histidine (purple) at position 172 of 1J8U (green).</caption>]]
+
[[File:Mut_gln172his.png|thumb|right|'''<caption>''' Mutation of glutamine (yellow) to histidine (purple) at position 172 of 1J8U (green).</caption>]]
 
</figure>
 
</figure>
 
...
 
...

Revision as of 23:17, 12 August 2013

Page still under construction!!!

Summary

In Task 8 the sequence of PAH was used for finding mutational effects, now the structure will be taken for these analysis. But how to find out, if a mutation changes the structure? Therefore, one calculates the energy of all atoms for the wildtype and the mutated structure and compares the results for changes. There are two different methods for this calculations given: Quantum Mechanics (QM) and Molecular Mechanics (MM). In QM the energy of all electrons in a protein is calculated. It is one of the most accurated methods, but it is very time consuming. In MM the energy of a system is calculated as a function of nuclear positions. It is very fast and easy to calculate, but it ignores electronic motions and is not as accurate as QM. Since QM is too time intensive and the results of MM are nearly as good as the ones calculated with QM, we use MM for the further analysis. Molecular Mechanics uses force fields for the energy calculation, which is defined as a sum of terms. The terms are non-bonded (electrostatic and Van-der-Waals) and bonded (Bond stretching, Angle stretching, bond rotation) interactions. For the structure based mutation analysis the SCWRL and FoldX webserver were used.

Structure selection

Lab journal

In some Tasks before, we used the protein structure of 2PAH as reference, but now we have to check some more constraints for the protein structure selection:

  • Structure with the highest resolution (small Å value),
  • smallest R-factor,
  • highest coverage,
  • pH-value ideally near physiological pH of 7.4 and
  • no gaps (missing residues) included in the structure, so a consecutive numbering of residues should be given.

To check which protein structure to use for further analysis, we compared the constraint data for all sequences given in the PAH (P00439) Uniprot entry. <figtable id="pro-struc">

Protein Method Resolution(Å) R-factor pH Gaps Chain Positions Coverage %
1DMW X-ray 2.00 0.20 6.80 - A 118-424 67,92
1J8T X-ray 1.70 0.20 6.80 - A 103-427 71.90
1J8U X-ray 1.50 0.16 6.80 - A 103-427 71.90
1KW0 X-ray 2.50 0.22 6.80 - A 103-427 71.90
1LRM X-ray 2.10 0.21 6.80 - A 103-427 71.90
1MMK X-ray 2.00 0.20 6.80 - A 103-427 71.90
1MMT X-ray 2.00 0.21 6.80 - A 103-427 71.90
1PAH X-ray 2.00 0.18 6.80 - A 117-424 68.14
1TDW X-ray 2.10 0.21 6.80 - A 117-424 68.14
1TG2 X-ray 2.20 0.21 6.80 - A 117-424 68.14
2PAH X-ray 3.10 0.25 7.00 136LEU-143ASP A/B 118-452 74.12
3PAH X-ray 2.00 0.18 6.80 - A 117-424 68.14
1ANP X-ray 2.11 0.20 6.80 - A 104-427 71.68
4PAH X-ray 2.00 0.17 6.80 - A 117-424 68.14
5PAH X-ray 2.10 0.16 6.80 - A 117-424 68.14
6PAH X-ray 2.15 0.17 6.80 - A 117-424 68.14
...

</figtable> All proteins were found with the X-ray diffraction method. In <xr id="pro-struc"/> we can see, that the structure of 1J8U has a better resolution value as well as R-factor than the other structures. Although 2PAH has a better pH-value, a higher coverage and even two domains, however, the structure includes one gap. For this reason as well as the better R-factor and higher resolution value, we have chosen the structure of 1J8U (no gaps) for further analysis. Moreover, the structure includes the second highest coverage and also a very good pH-value.

The structure of 1J8U as well as its ligands are shown in the <xr id="1j8u"/> below. The binding sites which belong to the ligands are shown in <xr id="bindingsite"/>.

</figure> </figure>
<figure id="1j8u">
3D structure of 1J8U (green) in cartoon style with its two ligands H4B - C9H15N5O3 (blue) and FE(II) (grey).
<figure id="bindingsite">
Structure of 1J8U (green) in cartoon style with zoom to the ligands H4B - C9H15N5O3 (blue) with corresponding binding site (red) and FE(II) (grey) with corresponding binding site (orange). The binding sites are shown in sticks and their belonging surface structure.

Visualisation of used mutations

Following five mutations from the previously selected mutations in Task8 are mapped to the crystal structure:

Substitution Prediction Database
Gln172His neutral dbSNP
Ala259Val non-neutral HGMD
Thr266Ala non-neutral dbSNP
Phe392Ser non-neutral dbSNP
Pro416Gln non-neutral HGMD


Gln172His

<figure id="Q172H">

Mutation of glutamine (yellow) to histidine (purple) at position 172 of 1J8U (green).

</figure> ...

Ala259Val

<figure id="A259V">

Mutation of alanine (yellow) to valine (purple) at position 172 of 1J8U (green).

</figure> ...

Thr266Ala

<figure id="T266A">

Mutation of threonine (yellow) to alanine (purple) at position 172 of 1J8U (green).

</figure> ...

Phe392Ser

<figure id="F392S">

Mutation of phenylalanine (yellow) to serine (purple) at position 172 of 1J8U (green).

</figure> ...

Pro416Gln

<figure id="P416Q">

Mutation of proline (yellow) to glutamine (purple) at position 172 of 1J8U (green).

</figure> ...

Mutated structure creation

SCWRL

...

FoldX

...

Energy comparisons

...

Minimise

In the table below, the energy for all five runs of the minisation are given. Since the SCWRL output could not be minimised, we only can see the difference between the wildtype (WT) and the five mutation structures constructed with foldX. <figtable id="minimise">

minimisation run
Type 1 2 3 4 5
WT -7516.27 -7524.20 -7291.36 -7133.71 -6996.34
Q172H -7514.27 -7504.92 -7281.60 -7131.31 -7023.56
A259V -7469.61 -7462.48 -7221.58 -7065.94 -6951.32
T266A -7536.77 -7523.38 -7298.14 -7165.29 -7084.60
F392S -7511.51 -7528.61 -7290.01 -7132.75 -7010.52
P416Q -7556.57 -7542.79 -7299.39 -7151.21 -7040.37
...

</figtable> The energies of the wildtype and the mutated structures is very similar and is per run increasing slightly. Only for the structures of the wildtype and the mutation F392S has the second run a small decreased value.

References

<references/>