Task 2 lab journal (MSUD)

From Bioinformatikpedia

Sequence searches

Configure parameters

  • We have used blastall for blastp and psiblast
  • BLAST and PSI-BLAST
    • big_80 database was used for sequence search: -d /mnt/project/pracstrucfunc13/data/big/big_80
    • output put format was set to xml and tab separated values:
      • XML output: -m 7
      • TSV output: -m 9
    • the number of hits to be shown was set to 200000: -b 200000
    • For PSI-Blast number of iterations and cutoff of E-values were set with following parameters
      • iteration: -j <number_of_iterations>
      • E-value cutoff: -h <threshold>
  • HHBlits
    • uniprot20 database was used for sequence search: -d /mnt/project/pracstrucfunc13/data/hhblits/uniprot20_current
    • Resulted a3m, hhm and hhr files are stored: -o result.hhr -oa3m result.a3m -ohhm result.hhm
    • Output size was also set to 200000: -Z 200000 -B 200000

Data creation

For each of blast, psi-blast and hhblits, a shell script was written to perform sequence search.

Convert result of hhblits

We find result of hhblits in hhr format is not parser-friendly. So the program hhr2tsv was written. It finds out all hits and their statistics information in hhr file and write the data out to a tsv (tab-separated values) file.

SCOP classification

In order to check the quality of sequence search programs, we have used the parsable file from Structural Classification of Proteins(SCOP). The classification of domains in PDB files can be observed in file dir.cla.scop.txt_1.75.

Id mapping from Uniprot to Gene Ontology

Quality check of sequence search programs was also performed using Gene Ontology(GO) annotations. The Idmapping data was used to assign GO annotations to each Uniprot proteins (genes).

  • Idmapping data in TSV format was downloaded from FTP site of Uniprot: idmapping_selected.tab.gz (large file! 1.2 GB) README of idmapping
  • GO term IDs are stored in the 7th column
  • Uniprot accession codes are in the 1st column

Following command was used for extraction of all Uniprot entries with GO annotation:

zcat idmapping_selected.tab.gz | cut -f1,7 | grep -vP '\s$' > uniprot_go_mapping.tsv

For efficient searching of GO terms, the mapping data was stored into a SQLite3 database. Following is the schema of the database : <source lang='sql'> CREATE TABLE uniprot_go_mapping (

   uniprot_ac CHAR( 6 )   NOT NULL,
   go_term    CHAR( 10 )  NOT NULL,
   PRIMARY KEY ( uniprot_ac, go_term ) 

); CREATE INDEX idx_uniprot_ac ON uniprot_go_mapping (uniprot_ac ASC); </source>

Following is the python script for transporting mapping data into SQLite. <source lang='python'>

  1. !/usr/bin/env python

import sqlite3 import math conn = sqlite3.connect('idmapping.sqlite3') c = conn.cursor()

callback function for map procedure pack key and value into one tuple def generate_key_val_pair(key, val): return (key, val)

tsv = file('/mnt/datentank/uniprot_go_reduced.map')

entriesBuffer = []

  1. add uniprot ac and GO term pairs into sqlite db

for lineId, line in enumerate(tsv): line = line.strip() keyval = line.split('\t') key = keyval[0] vals = keyval[1].split('; ') keys = [ key ] * len(vals) entries = map(generate_key_val_pair, keys, vals) if (len(entriesBuffer) < 1000000): entriesBuffer.extend(entries) else: c.executemany("INSERT OR IGNORE INTO uniprot_go_mapping \ (uniprot_ac,go_term) VALUES (?,?);", entriesBuffer) conn.commit() entriesBuffer[:] = [] print 'Processed %d lines' % (lineId)

tsv.close() </source>

Input and output

The query sequences for the 4 subunits of BCKDC locate at /mnt/home/student/weish/master-practical-2013/task01/. Results for sequence search locate in the directory /mnt/home/student/weish/master-practical-2013/task02/01-seq-search/results. For BLAST and PSI-BLAST, statistics (such as E-value, probability and identity) are stored in *.tsv files. Detailed results are shown in xml files. For HHBlits, the *.hhr files contain information about statistics and hits.

Perform statistics

After all hhr files were converted into tsv files and preparation of SQLite3 database for id mapping, a R script was used for all the statistical tasks, including distribution of e-values and identity, intersection of hits, SCOP and GO tests.

Here is the R code:

#######################################################################
#File:        evalAlign.R
#Description: perform pairwise comparison of sequence search methods
#######################################################################

library(ggplot2)

library(RSQLite)

loadHHBlitsTSV <- function(file) {
  data <- read.csv(file=file, sep='\t', header=TRUE)
  data$eval <- data$e_value
  return(data)
}

loadBlastTSV <- function(file) {
  data <- read.csv(file=file, sep='\t', header=FALSE, comment.char='#')
  names(data) <- c('query', 
                       'hit', 
                       'identity', 
                       'algn_len', 
                       'mismatch', 
                       'gap_open',
                       'q_start',
                       'q_end',
                       's_start', 
                       's_end', 
                       'eval',
                       'score')
  return(data)
}

#get pdb hits from sequence search results
getPDBEntries <- function(data)
{
  d <- data[grep('pdb\\|pdb', data$hit),]
  d$chain <- gsub(pattern='^.*(\\w)$', replacement='\\1', d$hit)
  d$pdb <- gsub(pattern='^.*(\\w{4})_\\w$', replacement='\\1', d$hit)
  d$pdb_chain <- paste(d$pdb, d$chain, sep='_')
  return(d)
}

#get uniprot hits from sequence search results
getUniProtEntries <- function(data)
{
  d <- data[grep("^tr|sp\\|", data$hit), ]
  d$uniprot <- gsub(pattern="^(tr|sp)\\|(\\w*)\\|.*$", replacement="\\2", d$hit)
  return(d)
}

#load parsable file: dir.cla.scop.txt
loadSCOPClassification <- function(file)
{
  data <- read.csv(file=file, sep='\t', comment.char='#')
  names(data) <- c('domain',
                   'pdb',
                   'chain',
                   'sccs',
                   'sunid',
                   'fullstr')
  data$pdb_chain <- paste(data$pdb, substr(data$chain,1,1), sep='_')
  return(data)
}

getSCOPFold <- function(scopData)
{
  gsub(pattern="^(\\w\\.\\d*)\\..*$", replacement="\\1", scopData$sccs)
}

getUniprotGO <- function(data, database.path)
{
  conn <- dbConnect(dbDriver('SQLite'), dbname=database.path)
  uniprot_acs <- unique(data$uniprot)
  #create temperory table
  dbGetQuery(conn, "CREATE TEMPORARY TABLE temp_uniprot_ac(uniprot_ac CHAR(6));")
  dbSendPreparedQuery(
    conn, 
    "INSERT INTO temp_uniprot_ac(uniprot_ac) VALUES(:uniprot_ac)",
    bind.data=data.frame(uniprot_ac=data$uniprot))
  result <- dbGetQuery(
    conn, 
    "SELECT count(t.uniprot_ac) as count, go_term as go
    FROM temp_uniprot_ac t,uniprot_go_mapping m 
    WHERE t.uniprot_ac = m.uniprot_ac GROUP BY go_term ORDER BY count")
  dbSendQuery(conn, "DROP TABLE temp_uniprot_ac;")
  dbDisconnect(conn)
  return(result)
}

###
# configure test cases for reference sequences
###
querys <- c('BCKDHA', 'BCKDHB', 'DBT', 'DLD')
data.path <- 
  '/home/wei/git/MasterPractical2013/results/task02/01-seq-search/search-results'
color.palette <- 'Set2'
database.path <- '/home/wei/idmapping.sqlite3'
image.type <- '.png'

#load SCOP classification
scop <- loadSCOPClassification(
  file='/home/wei/git/MasterPractical2013/data/SCOP/dir.cla.scop.txt_1.75')

for (query in querys) {
  #configure input files
  input.filenames <- c(paste('blastp_', query, '.tsv', sep=''),
      paste('psiblast-2_iterations_eval_0.002-refseq_', query, '_protein.fasta.tsv', sep=''),
      paste('psiblast-2_iterations_eval_10e-10-refseq_', query, '_protein.fasta.tsv', sep=''),
      paste('psiblast-10_iterations_eval_0.002-refseq_', query, '_protein.fasta.tsv', sep=''),
      paste('psiblast-10_iterations_eval_10e-10-refseq_', query, '_protein.fasta.tsv', sep=''),
      paste('hhblits_refseq_', query, '_protein.fasta.hhr.tsv', sep=''))
  data.names <- c('blast', 
                  'psiblast(iter. 2, e-val. 0.002)', 
                  'psiblast(iter. 2, e-val. 10e-10)',
                  'psiblast(iter. 10, e-val. 0.002)',
                  'psiblast(iter. 10, e-val. 10e-10)',
                  'hhblits')
  data.titles <- c('Blast',
                   'PSI-Blast[iter. 2, eval. 0.002]',
                   'PSI-Blast[iter. 2, eval. 10e-10]',
                   'PSI-Blast[iter. 10, eval. 0.002]',
                   'PSI-Blast[iter. 10, eval. 10e-10]',
                   'HHBlits')
  
  #load data
  data <- list()
  evals <- c()
  methods <- c()
  identities <- c()
  for (index in 1:length(input.filenames))
  {
    data.name <- data.names[index]
    print(data.name)
    input.path <- file.path(data.path, input.filenames[index])
    if (data.name != 'hhblits') 
    {
      frame <- loadBlastTSV(input.path)
    } else {
      frame <- loadHHBlitsTSV(input.path)
    }
    data[[ data.name ]] <- frame
    n <- length(frame$eval)
    evals <- c(evals, frame$eval)
    methods <- c(methods, rep(x=data.name, n))
    identities <- c(identities, frame$identity)
  }
  DATA <- data.frame(evalue=evals, identity=identities, method=methods)

###
# evaluation: e-value distribution
###
  PLOT <- ggplot(DATA, aes(x=evalue))
  PLOT + geom_density(aes(colour=factor(method), fill=factor(method)), alpha=.7) +
    scale_x_log10() + scale_alpha(range=c(0, 1)) +
    ggtitle(paste('E-value distribtution (', query, ')', sep='')) +
    xlab('E-value') + ylab('Density')+
    scale_colour_brewer(palette=color.palette) +
    scale_fill_brewer(palette=color.palette)
  ggsave(paste("e-value-distribution_", query, image.type, sep=''), width=8.3, height=6.8, dpi=100)
###
# evaluation: identity distribution
###  
  PLOT <- ggplot(DATA, aes(x=identity))
  PLOT + geom_density(aes(colour=factor(method), fill=factor(method)), alpha=.7) +
    scale_alpha(range=c(0, 1)) +
    ggtitle(paste('Identity distribtution (', query, ')', sep='')) +
    xlab('Identity') + ylab('Density')+
    scale_colour_brewer(palette=color.palette) +
    scale_fill_brewer(palette=color.palette)
  ggsave(paste("identity_distribution_", query,image.type, sep=''), width=8.3, height=6.8, dpi=100)

###
# evaluation: intersection curve
###
  thresholds <- c(0, 1e-100, 1e-90, 1e-80, 1e-70, 
             1e-60, 1e-50, 1e-40, 1e-30, 1e-20, 
             1e-10, 1, 10)
  for (index1 in 1:length(data.names))
  {
    dataset1 <- data[[index1]]
    hits1 <- dataset1$hit
    meth.name <- data.names[index1]
    threshold <- c()
    quality <- c()
    method <- c()
    
    for (index2 in 1:length(data.names))
    {
      if (index2 == index1) {
        next();
      }
      dataset2 <- data[[index2]]
      hits2 <- dataset2$hit
      curmeth <- data.names[index2]
      for (thr in thresholds)
      {
        intersection <- length( 
          intersect(
            hits1[ dataset1$eval <= thr ],
            hits2[ dataset2$eval <= thr ]) )
        avg.intersect <- 0.5 * (
          intersection / length(hits1) + 
          intersection / length(hits2) )
        
        threshold <- c(threshold, thr)
        method <- c(method, curmeth)
        quality <- c(quality, avg.intersect)
      }
    }
    
    performance <- data.frame(threshold, quality, method)
    PLOT <- ggplot(performance, aes(x=threshold, y=quality, colour=method))
    PLOT + geom_line(size=1) + geom_point() + scale_x_log10() +
      ggtitle( 
        paste('Relative intersections (comparison to ',meth.name,')', sep='') ) +
      xlab('E-value') + ylab('intersecting results') +
      scale_colour_brewer(palette=color.palette) + ylim(0,1)
    ggsave( paste("intersection_to_", meth.name,"_", query,image.type, sep=''), width=8.3, height=6.8, dpi=100)
  }
  
###
# evaluation: protein structure classification
###
  for (methId in 1:length(data.names))
  {
    method <- data.names[methId]
    dataset <- getPDBEntries(data[[ method ]])
    subsetSCOP <- scop[ scop$pdb_chain %in% dataset$pdb_chain, ]
    d <- data.frame(folds=getSCOPFold(subsetSCOP))
    if (length(d$folds) == 0)
    {
      next();
    }
    d$freq <- rep(0, length(d$folds))
    ftable <- table(d$folds)
    for (fold in names(ftable))
    {
      d$freq[ d$folds == fold ] <- ftable[ fold ]
    }
    PLOT <- ggplot(d, aes(x=reorder(folds, freq)))
    PLOT + geom_histogram() + 
      ggtitle("Histogram of fold classes from annotated pdb hits") +
      xlab('fold class')
    ggsave( paste("SCOP_histogram_", method, "_", query, image.type, sep=''), width=8.3, height=6.8, dpi=100 );
  }
  
###
# evaluation: Gene Ontology
###
#   common_gos <- list()
  for (methId in 1:length(data.names))
  {
    method <- data.names[methId]
    dataset <- getUniProtEntries(data[[ method ]])
    if (length(dataset$uniprot) == 0)
    {
      next();
    }
    result <- getUniprotGO(dataset, database.path=database.path)
    total.count <- length(dataset$uniprot)
    #result$percent <- result$count / length(dataset$uniprot)
    result$percent <- result$count / total.count
    #result <- result[ result$count > 0.05 * total.count, ]
    result <- result[ order(result$count, decreasing=TRUE)[1:5], ]
    PLOT <- ggplot(result, aes(x=reorder(go, count), y=percent))
    PLOT + geom_bar(stat='identity') + coord_flip() + 
      ggtitle("Histogram of top-5 go terms from annotated uniprot hits") +
      xlab('GO term') + ylab('Frequency') + ylim(0,1)
    ggsave( paste("GO_histogram_", method, "_", query, ".png", sep=''), width=8.3, height=6.8, dpi=100 );
    
#     go_terms <- data.frame(threshold = thresholds, count=rep(0, length(thresholds)))
#     for (thr in thresholds)
#     {
#       subset <- dataset[ dataset$eval <= thr, ]
#       result <- getUniprotGO(dataset, database.path=database.path)
#       go_terms$count[ go_terms$threshold == thr ] <- length(unique(result$go))
#     }
#     common_gos[method] <- go_terms
  }
  
  save.image(file=paste('Workspace_', query, '.RData', sep=''), compress="xz")
}

Multiple sequence alignments

Dataset creation

The datasets were created from the Blast output.

For creating datasets with low, high and whole range sequence identity, the following Python script was used:


<source lang="python"> Use blast output to create datasets with different sequence identities.

Call with: python create_dataset.py <query fasta file> <blast xml output> <database fasta file>

@author: Laura Schiller

import sys from Bio import SeqIO, pairwise2 from Bio.Blast import NCBIXML from Bio.SubsMat import MatrixInfo

def get_sequences(query, blast_xml, db_path, out_file):

   
   Fetch full length sequences for a BLAST result and write them in a FASTA file.
   
   @param query:     fasta file with query sequence.
   @param blast_xml: xml file with BLAST search result.
   @param db_path:   path of db fasta file.
   @param out_file:  file to store the sequences.
   @return:          name of the file where the sequences are stored.
   
   
   print("get all sequences for blast result in %s" % blast_xml)
   query_sequence = SeqIO.read(query, "fasta")
   hit_seqs = [query_sequence]
   
   blast_output = open(blast_xml)
   blast_result = NCBIXML.read(blast_output)
   blast_output.close()
   
   hit_list = []
   for alignment in blast_result.alignments:
       hit_list.append(alignment.title.split(" ")[1]) # the id of the sequence    
   
   # get all blast hits
   seqs_db = SeqIO.parse(db_path, "fasta")
   counter = 0
   number = len(blast_result.alignments)
   for seq in seqs_db:
       if seq.id in hit_list:
           hit_seqs.append(seq)
           counter = counter + 1
           if (counter % 100) == 0:
               print("%d of %d sequences found" % (counter, number))
           if counter == number:
               break
   print("%d of %d sequences found" % (counter, len(blast_result.alignments)))
   
   # sort sequences according to order in blast result
   hit_seqs_sorted = [hit_seqs[0]]
   for seq_id in hit_list:
       for seq in hit_seqs:
           if seq.id == seq_id:
               hit_seqs_sorted.append(seq)
               break
   
   SeqIO.write(hit_seqs_sorted, out_file, "fasta")
   
   print("sequences saved in %s" % out_file)
   return out_file

def filter_seqs(seq_file, name):

   
   Filter sequences according to sequence identity limits.
   
   @param seq_file: fasta file with sequences.
   @param name:     string used for output file names.
   
   
   sequences = SeqIO.parse(seq_file, "fasta")
   seqs = []
   for seq in sequences:
       seqs.append(seq)
   query = seqs.pop(0) # always keep query (first sequence)
   # lists for low / high / whole range sequence identity
   filtered = [[query], [query], [query]]
   
   # identify hits with pdb structures -> these are preferentially taken
   hits_pdb = [hit for hit in seqs if (hit.id.split("|")[0] == "pdb")]
   seqs = [seq for seq in seqs if not (seq.id in [pdb_seq.id for pdb_seq in hits_pdb])]
   hits_pdb.extend(seqs) # now pdb hits are at the beginning
   
   print("filter sequences")
   for seq in hits_pdb:           
       try: 
           ident = identity(query, seq) 
       except KeyError: # raises if there is a non amino acid letter
           continue
       if (len(filtered[0]) < 10):
           keep = True            
           for seq2 in filtered[0]:
               try: 
                   ident2 = identity(seq, seq2) 
               except KeyError:
                   keep = False
                   break
               if ident2 >= 0.3:
                   keep = False
                   break
           if keep:
               filtered[0].append(seq)
       if (len(filtered[1]) < 10) and (ident > 0.6):
           filtered[1].append(seq)
       if (len(filtered[2]) < 8) and (ident >= 0.3) and (ident <= 0.6):
           filtered[2].append(seq)
       if (len(filtered[0]) == 10) and (len(filtered[1]) == 10) and (len(filtered[2]) == 8):
           break
   
   # for whole range take a part of low and a part of high sequence identity
   # plus the rest middle sequence identity
   filtered[2].extend(filtered[0][1:min(len(filtered[0]), 7)])
   filtered[2].extend(filtered[1][1:min(len(filtered[1]), 7)])
   
   SeqIO.write(filtered[0], name + "_low_seq_ident.fasta", "fasta")
   SeqIO.write(filtered[1], name + "_high_seq_ident.fasta", "fasta")
   SeqIO.write(filtered[2], name + "_whole_range_seq_ident.fasta", "fasta")
   
   print("sequences with low / high / whole range sequence identity saved in:")
   print(name + "_low_seq_ident.fasta")
   print(name + "_high_seq_ident.fasta")
   print(name + "_whole_range_seq_ident.fasta") 

def identity(seq1, seq2):

   
   Calculate relative sequence identity of two sequences.
   
   @return: number of identical residues divided by mean length.
   
   
   #pairwise alignment
   matrix = MatrixInfo.blosum62
   gap_open = -10
   gap_extend = -0.5     
   alignment = pairwise2.align.globalds(seq1, seq2, matrix, gap_open, gap_extend)
   seq1_aligned = alignment[0][0]
   seq2_aligned = alignment[0][1]
   #sequence identity
   ident = sum(c1 == c2 for c1, c2 in zip(seq1_aligned, seq2_aligned))
   ref_length = (len(seq1) + len(seq2)) / 2 # mean length
   return float(ident) / ref_length


if __name__ == '__main__':

   namestring = sys.argv[1].split("/")[-1].split(".")[0] # used as beginning of the output files
   print("-----------------------------------------------------------")
   all_seqs = get_sequences(sys.argv[1], sys.argv[2], sys.argv[3], namestring + "_all_sequences.fasta")
   filter_seqs(all_seqs, namestring)

</source>


The script can be found in /mnt/home/student/schillerl/MasterPractical/task2/create_dataset.py.

The datasets are located at /mnt/home/student/schillerl/MasterPractical/task2/datasets/.

Calling MSA programs

Call of T-Coffee:

#!/bin/bash

proteins=( BCKDHA BCKDHB DBT DLD )
identities=( low high whole_range )

for protein in ${proteins[*]}
do
	for identity in ${identities[*]}
	do
		t_coffee -output fasta -infile ${protein}_${identity}_seq_ident.fasta -outfile ${protein}_${identity}_seq_ident_tcoffee.fasta 
	done
done

Muscle:

#!/bin/bash

proteins=( BCKDHA BCKDHB DBT DLD )
identities=( low high whole_range )

for protein in ${proteins[*]}
do
	for identity in ${identities[*]}
	do
		muscle -in ${protein}_${identity}_seq_ident.fasta -out ${protein}_${identity}_seq_ident_muscle.fasta 
	done
done

Mafft:

#!/bin/bash

proteins=( BCKDHA BCKDHB DBT DLD )
identities=( low high whole_range )

for protein in ${proteins[*]}
do
	for identity in ${identities[*]}
	do
		mafft ${protein}_${identity}_seq_ident.fasta > ${protein}_${identity}_seq_ident_mafft.fasta  
	done
done


Espresso (a version of T-Coffee that uses structural information to find the right alignment) was run at the folling server: Espresso.

The MSAs are located at /mnt/home/student/schillerl/MasterPractical/task2/MSAs/.