Researching SNPs (PKU)

From Bioinformatikpedia
Revision as of 16:14, 9 June 2012 by Hollizeck (talk | contribs)

Short Task Description

In this weeks task, we will research SNPs in the PAH gene that cause or do not cause a different phenotype of the phenylalanine hydroxylase. The chosen databases are: The public release of the Human Gene Mutation Database (HGMD), dbSNP, SNPdbe, OMIM and SNPedia. You may find a detailed task description here.



<figtable id="tab:modelling_scores"> Key Values of the different SNP databases

Database Last Update Number of Entries Number of Entries concerning PAH Type of information Sources Curation/Verification Comment
HGMD public after 3 years (quarterly updated) 50,129 (only mis-/nonsense) 397 (only mis-/nonsense) all types of mutations current literature manual and computerised search in current literature too much advertising
dbSNP Oct 2011 292,031,791 2590 SNPs, short in/dels, polymorphisms, others submitted by registered sources (labs, institutes,.. ) clustering of identical submissions by NCBI
SNPdbe Mar 2012 1,691,464 328 nonsyn. SNPs Swissprot, dbSNP, PMD, OMIM, 1000 genomes cf. sources Predictions of functional effect, experimental evidence if available in source
OMIM June 2012 21,257 (Summary entries) 1 (64 selected SNPs) catalog of human genes and genetic disorders and traits current literature manually curated
SNPedia continuous, Wiki-style 29,058 53 SNPs publicly edited publicly edited get genotyped and predicted


<figure id="fig:SNPMapping">

Mapping of SNP entries found in the different databases. The bar on the left symbolizes the sequence of the PAH-gene. Every horizontal line refers to at least one entry from any of the databases. The numbers on the left of the bar refer to their amino acid position. Colorcoding in the middle section which contains the different mutations:
red means: disease causing according to HGMD
orange: missense, but no entry in HGMD
green: silent mutation
Colorcoding in the last column of the picture is for better overview and is according to the meaning of the effect from SNPdbe:
red: probably disease causing
green: probably not disease causing




29 synonymous SNPs


use to annotate common variants/interesting SNPs (e.g. .0002)


Following the task description, we looked at the conservation score, to determine quickly, whether a mutation found here is disease causing or not. Our reasoning can be found at this subpage.


redundant to dbSNP, no additional information => ignore