Difference between revisions of "Gaucher Disease: Task 03 - Sequence-based predictions"

From Bioinformatikpedia
(Transmembrane Helices)
(Transmembrane Helices)
Line 221: Line 221:
 
{| border="1" cellpadding="5" cellspacing="0" align="center"
 
{| border="1" cellpadding="5" cellspacing="0" align="center"
 
|-
 
|-
! colspan="5" style="background:#adceff;" | Comparison of TMH for P3
+
! colspan="5" style="background:#adceff;" | Comparison of TMH for P35462
 
|-
 
|-
 
! colspan="1" style="background:#adceff;" |
 
! colspan="1" style="background:#adceff;" |
Line 235: Line 235:
 
|# of TMH
 
|# of TMH
 
|
 
|
|align="center" | -
 
 
|
 
|
  +
|7
 
|
 
|
 
|-
 
|-
Line 242: Line 242:
 
|
 
|
 
|
 
|
  +
|34-52<br>67-91<br>101-126<br>150-170<br>187-209<br>330-351<br>363-386
|
 
 
|
 
|
 
|-
 
|-
Line 248: Line 248:
 
|
 
|
 
|
 
|
  +
|extracellular
|
 
 
|
 
|
 
|-
 
|-
Line 278: Line 278:
 
|
 
|
 
|
 
|
  +
|[[Image:3pbl.png|thumb|200x200px| ]]
|
 
 
|
 
|
 
|-
 
|-
Line 284: Line 284:
 
|
 
|
 
|
 
|
  +
|[http://opm.phar.umich.edu/protein.php?search=3pbl 3PBL]
|
 
 
|
 
|
 
|}
 
|}

Revision as of 21:28, 26 May 2013

Secondary Structure

TODO: What features are predicted? Discuss the results for your protein and the example proteins. Using the predictions, what could you learn about your protein and the example proteins? Compare to the available knowledge in UniProt, PDB, DisProt, OPM, PDBTM, Pfam...

Disorder

Transmembrane Helices

Four Proteins, including the Gaucher's disease causing Protein, where analysed under reference by transmembrane helices. The used prediction tools differ in their analysing features. While Polyphobius only differs between residues being part of a transmembrane helix or being inside/outside of the cytoplama, Memsat-SVM also predicts re-entrant helices and pore-linig helices. Due to the fact that pore-lining helices are also transmembrane helices, this kind of helices is detected of both prediction tools. In case of re-entrant helices both programms differ. Polyphobius takes this helix as a membrane helix, but Memsat-SVM predicts a re-entrant helix outside the membrane. Therefore the number of the transmembrane hlices, predicted by the tools, differ from each other. In this case also the C-terminal or the N-terminal may be predicted in a different area because of an additional helix.

Comparison of TMH for P04062
Prediction Assignment
Memsat SVM Polyphobius OPM PDMTM
# of TMH 1 - - -
TMH Topology 456-471 - - -
N-terminal extracellular extracellular extracellular -
C-terminal cytoplasmic extracellular extracellular -
Signal peptide 1-34 1-40 - -
Re-entrant Helix - - - -
Pore-lining Helix 1 - - -
Graphical position
Cartoon P04062.png
Graphik P04062.png
1ogs.png
-
more information MemsatSVM 1OGS 1OGS is not in the PDBTM


Comparison of TMH for Q9YDF8
Prediction Assignment
Memsat SVM Polyphobius OPM PDMTM
# of TMH 6 7 5 4
TMH Topology 43-59
72-90
101-118
128-143
163-184

221-245
42-60
68-88
108-129
137-157
163-184
196-213
224-244
25-46
55-78
86-97
100-107
117-148
27-50
55-75
88-107
118-142
N-terminal cytoplasmic extracellular cytoplasmic extracellular
C-terminal cytoplasmic cytoplasmic cytoplasmic extracellular
Signal peptide - -
Re-entrant Helix 188-217 -
Pore-lining Helix 1 -
Graphical position
Cartoon Q9YDF8.png
Graphik Q9YDF8.png
1ors-Q9YDF.png
1ors lm.png
more information MemsatSVM 1ORS 1ORS
Comparison of TMH for P4
Prediction Assignment
Memsat SVM Polyphobius OPM PDMTM
# of TMH -
TMH Topology
N-terminal
C-terminal
Signal peptide
Re-entrant Helix
Pore-lining Helix
Graphical position
more information
Comparison of TMH for P35462
Prediction Assignment
Memsat SVM Polyphobius OPM PDMTM
# of TMH 7
TMH Topology 34-52
67-91
101-126
150-170
187-209
330-351
363-386
N-terminal extracellular
C-terminal
Signal peptide
Re-entrant Helix
Pore-lining Helix
Graphical position
3pbl.png
more information 3PBL

Signal Peptides

GO Terms

Discussion

Other available methods

Prediction of Tool Information
secondary structure GOR http://gor.bb.iastate.edu/
disorder DISOPRED2 http://bioinf.cs.ucl.ac.uk/psipred/
transmembrane helices MEMSAT3 http://bioinf.cs.ucl.ac.uk/psipred/
TMHMM http://www.cbs.dtu.dk/services/TMHMM/
signal peptides
GO terms

What else can/is be predicted from protein sequence alone

  • Fold recognition (profile based pGenTHREADER and rapid GenTHREADER)
  • Fold domain recognition (pDomTHREADER)
  • Protein domain prediction (DomPred)
  • Homology modelling (BioSerf v2.0)
  • Function prediction (eukaryotic function: FFPred v2.0)
  • Prediction of TM topology and helix packing (SVM-based MEMPACK)

http://bioinf.cs.ucl.ac.uk/psipred/

Which predictions can be improved considerably by structure-based approaches