Molecular Dynamcis analysis

From Bioinformatikpedia
Revision as of 09:33, 16 September 2011 by Landerer (talk | contribs) (Quality assurance)

by Robert Greil and Cedric Landerer

Wildtype

First of all, we checked the resulting file with gmxcheck.

  • gmxcheck -f ref_md.tpr.xtc

Result

Reading frame       0 time    0.000   
# Atoms  68601
Precision 0.001 (nm)
Last frame       2000 time 10000.000   

Item        #frames Timestep (ps)
Step          2001    5
Time          2001    5
Lambda           0
Coords        2001    5
Velocities       0
Forces           0
Box           2001    5

The Simulation toked 6h33:50 ans the simulation speed was 36.564 ns/day. So, to reach 1 second of simulation, we had to wait around 75061 years. But this is a bit to long for this Project, so we just used the results we got. The potential energy was fluctuating about -9.185e+05 kJ/mol with a range of about 0.15e+04 kJ/mol. These information are given in the different log-files provided by the simulation.


Figure 1: Motion of the wild-type protein, Cartoon representation
Figure 2: Motion of the wild-type protein

To create the images, we saved each frame in PyMol<ref>The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC</ref> as an image, which we converted into gif format by for file in *.png; do convert "$file" "$(basename $file .png).gif"; done. Than we were able to use gifsicle to create an animated gif with the command gifsicle *.gif -loop.

As one can see in Figure 1 and Figure 2, we have mostly a motion in space. The motion within the protein, like it is shown by the normal mode analysis is not identifiable. There is no movement of the beta-sheet or helical region against each other.

Quality assurance

Convergence of energy terms

  • g_energy -f ref_md.tpr.edr -o xvg/xxxx.xvg

Temperature

Figure 3: Temperature over time of the molecular dynamics simulation of the wild-type protein
Energy                      Average   Err.Est.       RMSD  Tot-Drift 
-------------------------------------------------------------------------------
Temperature                 297.942     0.0055    1.11471  0.0143589  (K)


Pressure

Figure 4: Pressure over time of the molecular dynamics simulation of the wild-type protein
Energy                      Average   Err.Est.       RMSD  Tot-Drift
-------------------------------------------------------------------------------
Pressure                   0.995939      0.014     83.256  0.0113633  (bar)

Energy

Figure 5: Energy over time of the molecular dynamics simulation of the wild-type protein

Volume

Figure 6: Volume over time of the molecular dynamics simulation of the wild-type protein

Density

Figure 7: Densety over time of the molecular dynamics simulation of the wild-type protein


Box

Figure 8: Box size in X,Y and Z direction over time of the molecular dynamics simulation of the wild-type protein. The X and Y values are equal over time.

Mutation 8a [C282Y]

still waiting to finish // LRZ won't do anything because of LRZ cluster update

Mutation 8b [C282S]

still waiting to finish // LRZ won't do anything because of LRZ cluster update

References

<references />