Molecular Dynamics Simulations Analysis of Glucocerebrosidase

From Bioinformatikpedia
Revision as of 08:46, 23 August 2011 by Brunners (talk | contribs) (Energy)

Introduction

To analyze our Molecular Dynamics Simulations we followed the tutorial described here: http://md.chem.rug.nl/~mdcourse/analysis1.html

Wildtype

A brief check of results

  • command: gmxcheck -f 2NT0_wt_md.xtc

How many frames are in the trajectory file and what is the time resolution?

  • 2001 frames
  • timestep: 5ps

How long did the simulation run in real time (hours), what was the simulation speed (ns/day) and how many years would the simulation take to reach a second?

  • Simulation run: 8h37:36
  • Simulation speed: 27.821
  • Time to reach a second: 1/0.000000028 = 35714285,714285714 days = 97847,358121331 years

Which contribution to the potential energy accounts for most of the calculations?

  • -9.39801e+05 kJ/mol

Visualization of results

For visualization we extract 1000 frames from the trajectory (-dt 10), only select the protein without the water and remove the jumps over the boundaries to make a continuous trajectory (-pbc nojump).

  • command: trjconv -s 2NT0_wt_md.tpr -f 2NT0_wt_md.xtc -o protein.pdb -pbc nojump -dt 10
Figure 1: The protein with the spectrum
Figure 2: The protein with the box around it
Figure 3: The cartoon presentation after using the command dss
Figure 4: The active site

STILL MISSING: movie

Quality assurance

Convergence of energy terms

First we look at the energy terms. Therefore we look at the temperature, the pressure, the energy, the volume, the density, the box and the interaction energies between protein and solvent (Coulomb and van der Waals).

With the following commands we produced *.xvg files which were visualized with xmgrace.

g_energy -f 2NT0_wt_md.edr -o temperature.xvg
g_energy -f 2NT0_wt_md.edr -o pressure.xvg
g_energy -f 2NT0_wt_md.edr -o energy.xvg
g_energy -f 2NT0_wt_md.edr -o volume.xvg
g_energy -f 2NT0_wt_md.edr -o density.xvg
g_energy -f 2NT0_wt_md.edr -o box.xvg

Temperature
Figure 6: Temperature of the Molecular Dynamics Simulation of the Wildtype


Energy Average Err.Est. RMSD Tot-Drift
Temperature 297.912 0.0062 1.08924 0.00616934 (K)

What is the average temperature and what is the heat capacity of the system?
297.912 K

In figure 6 you can see the plot for the temperature during the simulation. It fluctuates between 295 K and 301 K. So the temperature is very stable, the difference is only six Kelvin. That means that the system reached very soon a stable temperature.

Pressure
Figure 7: Pressure of the Molecular Dynamics Simulation of the Wildtype


Energy Average Err.Est. RMSD Tot-Drift
Pressure 1.00032 0.014 87.9016 0.0583997 (bar)

Estimate the plateau values for the pressure.
0 bar? 1.00032 bar? higher?

The pressure fluctuates around -300 bar and +300 bar. That is a difference of 600 bar which is very large. The system seems not to have reached its plateau. So it is also hard to estimate such a value because no trend is observable.

Energy
Figure 8: Energies of the Molecular Dynamics Simulation of the Wildtype


Energy Average Err.Est. RMSD Tot-Drift
Potential -939801 85 924.013 -583.172 (kJ/mol)
Kinetic En. 170900 3.6 624.851 3.53909 (kJ/mol)
Total Energy -768901 84 1128.21 -579.63 (kJ/mol)

What are the terms plotted in the file energy.xvg?
potential, kinetic and total energy

In the plot you can see that all three energy terms reached a plateau. It is hard to say how large the fluctuations are, because the scale is too large. But as they converged the simulation seems to have reached its optimum.

Volume
Figure 9: Volume of the Molecular Dynamics Simulation of the Wildtype


Energy Average Err.Est. RMSD Tot-Drift
Volume 735.655 0.042 0.552925 -0.0802412 (nm^3)

Estimate the plateau values for the volume.
735.655? 736?

In figure 9 you can see the volume fluctuating between 734 nm³ and 737 nm³. The difference is only three nm³. So the colume also converged to a an interval.

Density
Figure 10: Density of the Molecular Dynamics Simulation of the Wildtype

Energy Average Err.Est. RMSD Tot-Drift
Density 1009.64 0.058 0.75885 0.110104 (kg/m^3)

Estimate the plateau values for the density.
1009.64

Box
Figure 11: Boxes of the Molecular Dynamics Simulation of the Wildtype

Energy Average Err.Est. RMSD Tot-Drift
Box-X 10.1328 0.0002 0.00253864 -0.000368389 (nm)
Box-Y 10.1328 0.0002 0.00253864 -0.000368389 (nm)
Box-Z 7.16498 0.00014 0.00179508 -0.000260487 (nm)

What are the terms plotted in the file box.xvg?
the sizes of the box around the protein

Interaction Energy: Coulomb

Figure 12: Interaction energy of protein and solvent

Energy Average Err.Est. RMSD Tot-Drift
Coul-SR:Protein-non-Protein -24690.5 120 476.146 -405.451 (kJ/mol)
Coul-14:Protein-non-Protein 0 0 0 0 (kJ/mol)

Interaction Energy: van der Waals

Figure 13: Interaction energy of protein and solvent

Energy Average Err.Est. RMSD Tot-Drift
Coul-SR:Protein-Protein -23823.8 63 232.842 -193.75 (kJ/mol)
Coul-14:Protein-Protein 95543.6 68 227.139 424.841 (kJ/mol)

Minimum distances between periodic images

Root mean square fluctuations

Convergence of RMSD

Convergence of radius of gyration

Structural analysis: properties derived from configurations

Solvent accessible surface area

Hydrogen bonds

Salt bridges

Secondary structure

Ramachandran (phi/psi) plots

Analysis of dynamics and time-averaged properties

Root mean square deviations again

Cluster analysis

Distance RMSD

Mutation 7

still waiting


Mutation 10

still waiting