Structure-based mutation analysis BCKDHA
Contents
Structure selection
The following table presents the PDB structures for BCKDHA to date:
PDB id | resolution [Å] | R-factor | coverage | ph-value |
---|---|---|---|---|
1DTW | 2.70 | 0.224 | 7.5* | |
1OLS | 1.85 | 0.172 | 5.5 | |
1OLU | 1.90 | 0.161 | 5.5 | |
1OLX | 2.25 | 0.161 | 5.5 | |
1U5B | 1.83 | 0.156 | 5.8 | |
1V11 | 1.95 | 0.139* | 5.5 | |
1V16 | 1.90 | 0.132* | 5.5 | |
1V1M | 2.00 | 0.130* | 5.5 | |
1V1R | 1.80 | 0.158 | 5.5 | |
1WCI | 1.84 | 0.149 | 5.5 | |
1X7W | 1.73 | 0.148 | 5.8 | |
1X7X | 2.10 | 0.149 | 5.8 | |
1X7Y | 1.57 | 0.150 | 5.8 | |
1X7Z | 1.72 | 0.154 | 5.8 | |
1X80 | 2.00 | 0.161 | 5.8 | |
2BEU | 1.89 | 0.171 | 5.5 | |
2BEV | 1.80 | 0.139 | 5.5 | |
2BEW | 1.79 | 0.147 | 5.5 | |
2BFB | 1.77 | 0.145 | 5.5 | |
2BFC | 1.64 | 0.144 | 5.5 | |
2BFD | 1.39* | 0.150 | 5.5 | |
2BFE | 1.69 | 0.150 | 5.5 | |
2BFF | 1.46 | 0.150 | 5.5 | |
2J9F | 1.88 | 0.171 | 5.5 |
The following PDB Structure was chosen because of its good experimental resolution: <bold></bold>
- resultion:
- R-factor
- ph-value
Comparison energies
Mapping of the mutations on the crystal structure
SCWRL
Before we could use SCWRL we first had to get the sequence of our model: repairPDB bckdha.pdb -seq >> bckdha.seq
When we have the sequence we have to make one file for each mutation. In these files we copied the bckdha.seq and changed the sequence to lower case letters. Then we add the mutation in an upper case letter.
To run SCWRL we used the command: scwrl -i bckdha.pdb -s mutation1.seq -o mutation1Model.pdb
Total minimal energy of the graph
Position | Energy |
---|---|
M82L | 642.213 |
Q125E | 616.85 |
Y166N | 616.293 |
G249S | 633.378 |
C264W | 805.257 |
R265W | 710.647 |
I326T | 619.424 |
F409C | 617.305 |
Y438N | 615.951 |
foldX
To use foldX we first build a runscript. Additionally we had to create one file with all PDB Ids each in a new line (list.txt).
<TITLE>FOLDX_runscript; <JOBSTART>#; <PDBS>#; <BATCH>foldx_protein.txt; <COMMANDS>FOLDX_commandfile; <Stability>list.txt; <END>#; <OPTIONS>FOLDX_optionfile; //<Temperature>298; <R>#; <pH>5.5; <IonStrength>0.050; <water>-CRYSTAL; <metal>-CRYSTAL; <VdWDesign>2; <OutPDB>false; <pdb_hydrogens>false; <END>#; <JOBEND>#; <ENDFILE>#;
total energy | difference | |
---|---|---|
wildtype | 402.35 | 0 |
mutant1 | 382.53 | 19.82 |
mutant2 | 331.79 | 71.56 |
mutant3 | 370.75 | 33.6 |
mutant4 | 394.97 | 10.38 |
mutant5 | 382.76 | 23.59 |
mutant6 | 324.92 | 82.43 |
mutant7 | 385.08 | 23.27 |
mutant8 | 394.32 | 15.03 |
mutant9 | 396.13 | 14.22 |
gromacs
Gromacs
1. fetchpdb
The fetch-pdb script first checks, if it was called with an valid PDB-id. If the entered PDB code has 4letters, the script tries to download the pdb-file from the server. The successfully downloaded folder gets unzipped and everything except the actual pdb file is removed.
2. repairPDB
3. SCWRL
4.pdb2gmx
Warning: Starting residue K456 in chain not identified as Protein/RNA/DNA. Warning: Starting residue MN458 in chain not identified as Protein/RNA/DNA. Warning: Starting residue TDP556 in chain not identified as Protein/RNA/DNA.
und später dann: Fatal error: Residue 'MN' not found in residue topology database
removed first HAtoms: K, MN and TDP -> worked
5. MDP
6.grompp
grompp -v -f MDP_bckdha.mdp -c bckdha.gro -p topol.top -o bckdha.tpr
processing coordinates... double-checking input for internal consistency... Reading position restraint coords from bckdha.gro renumbering atomtypes...
GB parameter(s) missing or negative for atom type 'OW'
GB parameter(s) missing or negative for atom type 'HW'
Program grompp, VERSION 4.5.3 Source code file: /build/buildd/gromacs-4.5.3/src/kernel/grompp.c, line: 1123
Fatal error: Can't do GB electrostatics; the implicit_genborn_params section of the forcefield is missing parameters for 2 atomtypes or they might be negative. For more information and tips for troubleshooting, please check the GROMACS website at http://www.gromacs.org/Documentation/Errors
7.System Minimization
8.Analyzation
go back to Maple syrup urine disease main page
go back to Task 6 Sequence based mutation analysis