Molecular Dynamics Simulations Analysis of Glucocerebrosidase
Contents
Introduction
To analyze our Molecular Dynamics Simulations we followed the tutorial described here: http://md.chem.rug.nl/~mdcourse/analysis1.html
Wildtype
A brief check of results
- command:
gmxcheck -f 2NT0_wt_md.xtc
How many frames are in the trajectory file and what is the time resolution?
- 2001 frames
- timestep: 5ps
How long did the simulation run in real time (hours), what was the simulation speed (ns/day) and how many years would the simulation take to reach a second?
- Simulation run: 8h37:36
- Simulation speed: 27.821
- Time to reach a second: 1/0.000000028 = 35714285,714285714 days = 97847,358121331 years
Which contribution to the potential energy accounts for most of the calculations?
- -9.39801e+05 kJ/mol
Visualization of results
For visualization we extract 1000 frames from the trajectory (-dt 10
), only select the protein without the water and remove the jumps over the boundaries to make a continuous trajectory (-pbc nojump
).
- command:
trjconv -s 2NT0_wt_md.tpr -f 2NT0_wt_md.xtc -o protein.pdb -pbc nojump -dt 10
STILL MISSING: movie
Quality assurance
Convergence of energy terms
First we look at the energy terms. Therefore we look at the temperature, the pressure, the energy, the volume, the density, the box and the interaction energies between protein and solvent (Coulomb and van der Waals).
With the following commands we produced *.xvg files which were visualized with xmgrace.
g_energy -f 2NT0_wt_md.edr -o temperature.xvg
g_energy -f 2NT0_wt_md.edr -o pressure.xvg
g_energy -f 2NT0_wt_md.edr -o energy.xvg
g_energy -f 2NT0_wt_md.edr -o volume.xvg
g_energy -f 2NT0_wt_md.edr -o density.xvg
g_energy -f 2NT0_wt_md.edr -o box.xvg
Temperature
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Temperature | 297.912 | 0.0062 | 1.08924 | 0.00616934 (K) |
What is the average temperature and what is the heat capacity of the system?
297.912 K
In figure 6 you can see the plot for the temperature during the simulation. It fluctuates between 295 K and 301 K. So the temperature is very stable, the difference is only six Kelvin. That means that the system reached very soon a stable temperature.
Pressure
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Pressure | 1.00032 | 0.014 | 87.9016 | 0.0583997 (bar) |
Estimate the plateau values for the pressure.
0 bar? 1.00032 bar? higher?
The pressure fluctuates around -300 bar and +300 bar. That is a difference of 600 bar which is very large. The system seems not to have reached its plateau. So it is also hard to estimate such a value because no trend is observable.
Energy
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Potential | -939801 | 85 | 924.013 | -583.172 (kJ/mol) |
Kinetic En. | 170900 | 3.6 | 624.851 | 3.53909 (kJ/mol) |
Total Energy | -768901 | 84 | 1128.21 | -579.63 (kJ/mol) |
What are the terms plotted in the file energy.xvg?
potential, kinetic and total energy
In the plot you can see that all three energy terms reached a plateau. It is hard to say how large the fluctuations are, because the scale is too large. But as they converged the simulation seems to have reached its optimum.
Volume
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Volume | 735.655 | 0.042 | 0.552925 | -0.0802412 (nm^3) |
Estimate the plateau values for the volume.
735.655? 736?
In figure 9 you can see the volume fluctuating between 734 nm³ and 737 nm³. The difference is only three nm³. So the colume also converged to a an interval.
Density
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Density | 1009.64 | 0.058 | 0.75885 | 0.110104 (kg/m^3) |
Estimate the plateau values for the density.
1009.64? 1010?
In figure 10 you can see the density fluctuating around 1010 kg/m³. The difference seems to be about 5 kg/m³. So the density also converged.
Box
Energy | Average | Err.Est. | RMSD | Tot-Drift |
Box-X | 10.1328 | 0.0002 | 0.00253864 | -0.000368389 (nm) |
Box-Y | 10.1328 | 0.0002 | 0.00253864 | -0.000368389 (nm) |
Box-Z | 7.16498 | 0.00014 | 0.00179508 | -0.000260487 (nm) |
What are the terms plotted in the file box.xvg?
The size of the box around the protein.
In figure 11 you can see the sizes of the box, the x-, the y- and the z-term. They are very constant with 10.1328, 10.1328 and 7.16498 nm.
Interaction Energy: Coulomb
Energy Average Err.Est. RMSD Tot-Drift
Coul-SR:Protein-non-Protein -24690.5 120 476.146 -405.451 (kJ/mol)
Coul-14:Protein-non-Protein 0 0 0 0 (kJ/mol)
Interaction Energy: van der Waals
Energy Average Err.Est. RMSD Tot-Drift
Coul-SR:Protein-Protein -23823.8 63 232.842 -193.75 (kJ/mol)
Coul-14:Protein-Protein 95543.6 68 227.139 424.841 (kJ/mol)
Minimum distances between periodic images
Root mean square fluctuations
Convergence of RMSD
Convergence of radius of gyration
Structural analysis: properties derived from configurations
Solvent accessible surface area
Hydrogen bonds
Salt bridges
Secondary structure
Ramachandran (phi/psi) plots
Analysis of dynamics and time-averaged properties
Root mean square deviations again
Cluster analysis
Distance RMSD
Mutation 7
still waiting
Mutation 10
still waiting