Difference between revisions of "Sequence-based predictions Protocol TSD"
(→GO terms) |
|||
Line 241: | Line 241: | ||
== GO terms == |
== GO terms == |
||
Start the predictions for the methods by going to their webservers. For GOPet the most recent model, program version and database were used. We also incresed the maximum number of reported GO-Terms to the maxmimum of 100. |
Start the predictions for the methods by going to their webservers. For GOPet the most recent model, program version and database were used. We also incresed the maximum number of reported GO-Terms to the maxmimum of 100. |
||
+ | |||
+ | R Plots |
||
+ | |||
+ | GO.prob <- c(8.3,10.5,0.1,1.0,2.4,1.8,0.2,1.0,5.8,2.6,4.4,1.4,0.5,0.9) |
||
+ | func.prob <-c(16.1,33.2,80.4,11.0,43.2,11.3,1.9,51.9,1.8,7.3,4.0,68.5) |
||
+ | GO.names <- c( "Signal_transducer","Receptor","Hormone","Structural protein","Transporter","Ion channel","Voltage-gated ion channel","Cation channel","Transcription","Transcription regulation","Stress response","Immune response","Growth factor","Metal ion transport" ) |
||
+ | func.names <-c("Amino acid biosynthesis","Biosynthesis of cofactors","Cell envelope","Cellular processes","Central intermediary metabolism","Energy metabolism","Fatty acid metabolism","Purines and pyrimidines","Regulatory functions","Replication and transcription","Translation ","Transport and binding") |
||
+ | main1<-"ProtFun2.2 GO prediction" |
||
+ | main2<-"ProtFun2.2 functional category prediction" |
||
+ | col1<-c("darkblue") |
||
+ | col2<-c("darkblue","darkblue", "darkred","darkblue","darkblue","darkblue", "darkblue","darkblue","darkblue", "darkblue","darkblue","darkblue") |
||
+ | png("protfunGO.png") |
||
+ | par(mar = c(11, 4, 4, 2) + 0.1) |
||
+ | barplot(GO.prob,names=GO.names,las=2,main=main1,beside=T,ylab="Probanility %",col=col1,cex.main=1.5) |
||
+ | legend('topright', c("Selected category", " Remaining categories"), fill=c("darkred","darkblue"), inset=c(0.1, 0.1)) |
||
+ | dev.off() |
||
+ | png("protfunFuncCat.png") |
||
+ | par(mar = c(13.5, 4, 4, 2) + 0.1) |
||
+ | barplot(func.prob,names=func.names,las=2,main=main2,beside=T,ylab="Probanility %",col=col2,cex.main=1.5, ylim=c(0,90)) |
||
+ | legend('topright', c("Selected category", " Remaining categories"), fill=c("darkred","darkblue"), inset=c(0.1, 0.0)) |
||
+ | dev.off() |
||
+ | |||
== Pfam == |
== Pfam == |
||
=== Clan statistics === |
=== Clan statistics === |
Latest revision as of 18:47, 21 May 2012
Contents
Secondary Structure
Get the sequences <source lang="bash">
- !/bin/bash
cd ../input
wget http://www.uniprot.org/uniprot/P10775.fasta wget http://www.uniprot.org/uniprot/Q9X0E6.fasta wget http://www.uniprot.org/uniprot/Q08209.fasta wget http://www.uniprot.org/uniprot/P06865.fasta </source>
For DSSP first get the executable <source lang="bash"> wget ftp://ftp.cmbi.ru.nl/pub/software/dssp/dssp-2.0.4-linux-amd64 chmod +x dssp-2.0.4-linux-amd64 </source>
Get the PDB files for the according Uniprot entries <source lang="bash">
- !/bin/bash
cd ../input
wget http://www.pdb.org/pdb/files/2BNH.pdb wget http://www.pdb.org/pdb/files/1KR4.pdb wget http://www.pdb.org/pdb/files/1AUI.pdb wget http://www.pdb.org/pdb/files/2GJX.pdb </source>
Start the predictions <source lang="bash">
- !/bin/bash
cd ../input/
for file in `ls | grep .fasta` ; do
reprof -i $file -o ../prediction/
done
for file in `ls | grep .pdb` ; do
./../bin/dssp-2.0.4-linux-amd64 -i $file -o ../prediction/$file.dssp
done </source>
For PSIPred use the webserver
Make ReProf output more readable
<source lang="bash">
- !/bin/bash
cd ../prediction/
for file in `ls *.reprof` ; do
grep -v -P "^(#|No)" $file | cut -f 2 | tr -d '\n' > $file.parsed echo "" >> $file.parsed grep -v -P "^(#|No)" $file | cut -f 3 | tr -d '\n' | tr 'L' 'C' >> $file.parsed echo "" >> $file.parsed
done </source>
Make DSSP output more readable <source lang="bash">
- !/bin/bash
cd ../prediction/
for file in `ls *.dssp` ; do
tail -n+29 $file | cut -c14 | tr -d '\n' > $file.parsed #Thanks to Jonathan echo "" >> $file.parsed tail -n+29 $file | cut -c17 | tr ' ' '-' | tr -d '\n' | tr 'HGIEBTS-' 'HHHEECCC' >> $file.parsed echo "" >> $file.parsed
done </source>
Make PsiPred Output more readable <source lang="bash">
- !/bin/bash
cd ../prediction/
for file in `ls *.psipred | grep -v "pdf"` ; do
grep "AA:" $file | sed -r 's/\s+AA: //' | tr -d '\n' > $file.parsed echo "" >> $file.parsed grep "Pred:" $file | sed 's/Pred: //' | tr -d '\n' >> $file.parsed echo "" >> $file.parsed
done </source>
Figures
Manually align the sequences by addin gaps ('-'). Create one file with the aligned sequences ('_seq.combined') and one with the structures, not containing any whitespace or gaps ('_struct.combined'). Take care of DSSPs lower case letter notation for disulfide bridges. Feed both files into cpssp and afterwards run latex, to create the picture. <source lang="bash">
- !/bin/bash
ids=( P06865 P10775 Q9X0E6 Q08209)
for i in "${ids[@]}" do /home/jonas/texmf/tex/latex/cpssp/cpssp -s ${i}_seq.combined -u ${i}_struct.combined -i 2 -o $i -b .2 done
- Adjust the latex files
for i in "${ids[@]}" do pdflatex ${i}_plot.tex pdftocairo -png ${i}_plot.pdf done </source>
Disorder
Get the required sequences <source lang="bash">
- !/bin/bash
cd ../input
wget http://www.uniprot.org/uniprot/P10775.fasta wget http://www.uniprot.org/uniprot/Q9X0E6.fasta wget http://www.uniprot.org/uniprot/Q08209.fasta wget http://www.uniprot.org/uniprot/P06865.fasta </source>
Start the predictions <source lang="bash">
- !/bin/bash
cd /opt/iupred/ END=.iupred
for file in `ls /mnt/home/student/reeb/3_SeqBasedPred/2_DISO/input | grep .fasta` ; do
IFS="." array=($file) unset IFS ./iupred /mnt/home/student/reeb/3_SeqBasedPred/2_DISO/input/$file long > /mnt/home/student/reeb/3_SeqBasedPred/2_DISO/predictions/${array[0]}$END
done
</source>
Transmembrane helices
Get the required sequence and our reference sequence <source lang="bash"> cd ../input/
wget http://www.uniprot.org/uniprot/P35462.fasta wget http://www.uniprot.org/uniprot/Q9YDF8.fasta wget http://www.uniprot.org/uniprot/P47863.fasta wget http://www.uniprot.org/uniprot/P06865.fasta
wget http://www.uniprot.org/uniprot/P02768.fasta wget http://www.uniprot.org/uniprot/P47863.fasta wget http://www.uniprot.org/uniprot/P11279.fasta </source>
Script for running polyphobius and creating everything needed in advance <source lang="bash">
- !/bin/bash
- $ -S /bin/sh
BLASTDB=$1 #/mnt/project/pracstrucfunc12/data/swissprot/uniprot_sprot
BLASTINDEX=$2 #/mnt/project/pracstrucfunc12/data/index_pp/uniprot_sprot.idx
WD=$3
OUT=$4
EXEC=/mnt/project/pracstrucfunc12/polyphobius/jphobius
EXECBG=/mnt/project/pracstrucfunc12/polyphobius/blastget
EXECKA=/mnt/opt/T-Coffee/bin/kalign
END=.pred
ENDBG=.bg
ENDKA=.msa
PARAMS=-poly
PARAMSKA="-f fasta"
PARAMSBG="-db $BLASTDB -ix $BLASTINDEX"
PATH=$PATH:/mnt/project/pracstrucfunc12/polyphobius/ export PATH
mkdir -p $OUT
cd $WD
pwd
`rm $OUT/log &> /dev/null`
for file in `ls | grep ".fasta"`; do
echo "Processing $file" &>> $OUT/log
IFS="." array=($file) unset IFS `perl $EXECBG $PARAMSBG $file > $OUT/${array[0]}$ENDBG`
wait
if [ `grep "^>" $OUT/${array[0]}$ENDBG | wc -l` -gt 1 ]; then
`$EXECKA $PARAMSKA -input $OUT/${array[0]}$ENDBG -output $OUT/${array[0]}$ENDKA`
wait
`perl $EXEC $PARAMS $OUT/${array[0]}$ENDKA &> $OUT/${array[0]}$END`
wait else
`perl $EXEC $PARAMS $OUT/${array[0]}$ENDBG &> $OUT/${array[0]}$END` fi done </source>
Start the predictions
<source lang="bash"> ./callPolyPhobius.sh /mnt/project/pracstrucfunc12/data/swissprot/uniprot_sprot /mnt/project/pracstrucfunc12/data/index_pp/uniprot_sprot.idx ../input/ ../prediction/sp/ </source>
Signal peptides
<source lang="bash">
- !/bin/bash
for file in /mnt/home/student/reeb/3_SeqBasedPred/4_SIGP/input/*fasta; do
prot=${file##*/} protein=${prot%.*} signalp -t euk -graphics gif -d /mnt/home/student/reeb/3_SeqBasedPred/4_SIGP/prediction_v3/gif_$protein -trunc 70 $file > /mnt/home/student/reeb/3_SeqBasedPred/4_SIGP/prediction_v3/$protein.out
done
</source>
GO terms
Start the predictions for the methods by going to their webservers. For GOPet the most recent model, program version and database were used. We also incresed the maximum number of reported GO-Terms to the maxmimum of 100.
R Plots
GO.prob <- c(8.3,10.5,0.1,1.0,2.4,1.8,0.2,1.0,5.8,2.6,4.4,1.4,0.5,0.9) func.prob <-c(16.1,33.2,80.4,11.0,43.2,11.3,1.9,51.9,1.8,7.3,4.0,68.5) GO.names <- c( "Signal_transducer","Receptor","Hormone","Structural protein","Transporter","Ion channel","Voltage-gated ion channel","Cation channel","Transcription","Transcription regulation","Stress response","Immune response","Growth factor","Metal ion transport" ) func.names <-c("Amino acid biosynthesis","Biosynthesis of cofactors","Cell envelope","Cellular processes","Central intermediary metabolism","Energy metabolism","Fatty acid metabolism","Purines and pyrimidines","Regulatory functions","Replication and transcription","Translation ","Transport and binding") main1<-"ProtFun2.2 GO prediction" main2<-"ProtFun2.2 functional category prediction" col1<-c("darkblue") col2<-c("darkblue","darkblue", "darkred","darkblue","darkblue","darkblue", "darkblue","darkblue","darkblue", "darkblue","darkblue","darkblue") png("protfunGO.png") par(mar = c(11, 4, 4, 2) + 0.1) barplot(GO.prob,names=GO.names,las=2,main=main1,beside=T,ylab="Probanility %",col=col1,cex.main=1.5) legend('topright', c("Selected category", " Remaining categories"), fill=c("darkred","darkblue"), inset=c(0.1, 0.1)) dev.off() png("protfunFuncCat.png") par(mar = c(13.5, 4, 4, 2) + 0.1) barplot(func.prob,names=func.names,las=2,main=main2,beside=T,ylab="Probanility %",col=col2,cex.main=1.5, ylim=c(0,90)) legend('topright', c("Selected category", " Remaining categories"), fill=c("darkred","darkblue"), inset=c(0.1, 0.0)) dev.off()
Pfam
Clan statistics
<source lang="bash"> wget ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/Pfam-A.clans.tsv.gz gunzip Pfam-A.clans.tsv.gz cut -f 2 Pfam-A.clans.tsv | sort | uniq -c | sed "s/CL[0-9]\+//g" | tr -d ' ' | sed '$d' > temp
- Enter R
> a<- read.table("temp") > summary(a)
V1 Min. : 1.000 1st Qu.: 2.000 Median : 4.000 Mean : 8.503 3rd Qu.: 8.000 Max. :194.000
</source>