Difference between revisions of "MD simulation analysis TSD"
(→General) |
m (→Total Energy) |
||
Line 101: | Line 101: | ||
| align="right" | [[Image:TSD 182L.totalEnergy.xvg.eps.png|thumb|300px|Average: -725500]] |
| align="right" | [[Image:TSD 182L.totalEnergy.xvg.eps.png|thumb|300px|Average: -725500]] |
||
|- |
|- |
||
− | |+ style="caption-side: bottom; text-align: left;" | <font size="1"><div align="justify">'''Table TODO: Total energy change during simulations.''' </div></font> |
+ | |+ style="caption-side: bottom; text-align: left;" | <font size="1"><div align="justify">'''Table TODO: Total energy change during simulations.''' A cumulative average is shown in red. </div></font> |
|} |
|} |
||
</figtable> |
</figtable> |
Revision as of 20:33, 30 August 2012
Contents
General
<figtable id="tbl:generalstats">
Model | CPU | Runtime | ns/day | days/s |
---|---|---|---|---|
style="border-style: solid; border-width: 0 0 0 0" | Wildtype | 16 | 13h52 | 17.3 | 3896 |
R178H | 12 | 19h03 | 12.6 | 5354 |
P182L | 32 | 07h08 | 33.6 | 2006 |
</figtable>
<xr id="tbl:generalstats"/> shows general statistics about the three simulations. It should be noted that the output of gmxcheck does not account for the number of CPUs used in the calculation and only reports the real time that passed. Normalizing the runtimes by the number of CPUs involved yields that the Wildtype and P182L mutation completed within 4 hours. R178H took 4 hours longer, however the difference is negligible, considering that they were not done in a testing environment and it is assumed that all CPUs could maintain equal load throughout the runs. In fact Gromacs reports a particularly high 12% of the time being lost due to PP/PME imbalance.
Trajectories
Thermodynamics
Pressure
<figtable id="tab:pressure">
</figtable>
<xr id="tab:pressure"/> shows the pressure oscillations for the three simulations. As can be seen per-frame values differ by several 100 bar, as to be expected <ref name="gromacsmanualpressure">http://www.gromacs.org/Documentation/Terminology/Pressure</ref>. More importantly the average shows convergence in every simulation and does not undergo any major changes towards the end of the simulations. The final average pressure also lies close to 0 in all cases.
Temperature
<figtable id="tab:temperature">
</figtable>
<xr id="tab:temperature"/> shows the temperature variances during the simulations. The mutations both show higher extreme values than the wildtype structure, especially P182L. The average however remains exactly the same for all simulations, which is the expected behavior after a period of time passed <ref name="">http://www.gromacs.org/Documentation/Terminology/Thermostats</ref>. The fact the all simulations arrive at the same value also supports that the simulations went well and arrived at the correct temperature.
Potential Energy
<figtable id="tab:potentialenergy">
</figtable>
<xr id="tab:potentialenergy"/> shows the fluctuations of potential energy during the simulations. As can be seen, during all simulations it is globally decreasing and the final averages of all three runs are similar.
Total Energy
<figtable id="tab:totenergy">
</figtable>
<xr id="tab:totenergy"/> shows the total energy which is composed of the potential energy shown before and the kinetic energy <ref name="gromacstotenergy">http://www.gromacs.org/Documentation/Terminology/Total_Energy</ref>. It also globally decreases for all runs and the final averages are very similar which leads to the conclusion, that the kinetic energy behaves similarly. Given that the WT behaves in the same way than the mutations one cannot say that the mutations have an effect on the total energy.
Flexibility
RMSF
Significance
Conclusion
References
<references/>