Difference between revisions of "Fabry:Homology based structure predictions"
Rackersederj (talk | contribs) (→Modeller: Edited Alignment input pictures added) |
Rackersederj (talk | contribs) (→Evaluation) |
||
Line 366: | Line 366: | ||
== Evaluation == |
== Evaluation == |
||
+ | <div style="float:left; border:thin solid lightgrey; margin-right: 20px;"> |
||
+ | <figtable id="tab:compare"> |
||
+ | <caption>Comparison of apo and complex structure</caption> |
||
+ | {| style="border-style: solid; border-width: 1px" |
||
+ | | [[File:FABRY_1R46_1R47.png|right|280px|thumb| Superimposed structures of 1R46 (blue) and 1R47 (green) in cartoon representation. Obviously, the structures do not differ much.]] |
||
+ | | [[File:FABRY_1R46_1R47_bindingGAL.png|right|280px|thumb| Comparison of the residues invoked in the binding of α-galactose in the apo structure (blue) and the complex structure (green) ]] |
||
+ | |- |
||
+ | |} |
||
+ | </figtable> |
||
+ | </div> |
||
+ | |||
+ | <figure id="fig:GAL:1R47">[[File:Fabry_GAL-1R47_psv_v_500.png|220px|thumb|right|<caption>Residues involved in the binding of α-galactose in 1R47 [http://www.pdb.org/pdb/images/GAL:1R47_psv_v_500.png source] </caption>]]</figure> |
||
+ | |||
+ | As an initial step of the evaluation, we compared the apo structure [http://www.pdb.org/pdb/explore.do?structureId=1R46 1R46] and the complex structure (with bound α-galactose) [http://www.pdb.org/pdb/explore.do?structureId=1R47 1R47]. Since the alignment of both the chains A of 1R46 and 1R47 in Pymol (see <xr id="tab:compare"/>) revealed a RMSD value of 0.248 and the comparison of the position and direction of the residues involved in the binding of the sugar (see <xr id="fig:GAL:1R47"/>) do not differ significantly, we used only the 1R46 structure for vizualisation, but computed all values and statistics for both structures.<br> |
||
+ | In the right figure in <xr id="tab:compare"/>, the residues Asp92A, Asp93A, LYS168A, ARG227A and ASP231A are depicted in sticks representation (thicker); they are responsible for the binding of the sugar in the complex structures, which is shown in magenta. Clearly, one can see not much difference in this region between 1R46 and 1R47. |
||
+ | |||
+ | <br style="clear:both;"> |
||
Revision as of 09:28, 24 May 2012
Fabry Disease » Homology based structure predictions
The following analyses were performed on the basis of the α-Galactosidase A sequence. Please consult the journal for the commands used to generate the results.
Contents
Dataset preparation
<figtable id="tab:datasetHHpred"> Dataset HHpred
pdb ID | E-value | Identity in % |
---|---|---|
> 80% sequence identity | ||
3hg3 | 8.6e-90 | 100 |
40% - 80% sequence identity | ||
1ktb | 4.2e-85 | 53 |
< 30% sequence identity | ||
3cc1 | 5.5e-74 | 25 |
1zy9 | 3.1e-48 | 13 |
3a24 | 7.8e-40 | 17 |
2xn2 | 5.3e-37 | 15 |
2d73 | 5.7e-36 | 14 |
3mi6 | 1.4e-31 | 15 |
2yfo | 9.1e-30 | 13 |
2f2h | 2.7e-20 | 17 |
2g3m | 2.2e-20 | 16 |
3nsx | 6e-20 | 13 |
3lpp | 2.2e-18 | 15 |
3l4y | 1.9e-18 | 15 |
3top | 3.6e-18 | 12 |
2xvl | 3.2e-18 | 16 |
2x2h | 4.9e-16 | 13 |
</figtable>
<figtable id="tab:datasetCOMA"> Dataset COMA
pdb ID | E-value | Identity in % |
---|---|---|
> 80% sequence identity | ||
- | - | - |
40% - 80% sequence identity | ||
1ktb | 1.7e-61 | 52 |
< 30% sequence identity | ||
3lrk | 1.2e-66 | 23 |
3a21 | 2.7e-65 | 26 |
1szn | 3.7e-59 | 22 |
3cc1 | 5.2e-58 | 19 |
1zy9 | 1.7e-39 | 9 |
3mi6 | 4.3e-38 | 11 |
2yfn | 4.4e-35 | 10 |
2d73 | 1.9e-32 | 9 |
3a24 | 5.6e-30 | 10 |
1xsi | 1.9e-12 | 10 |
2g3m | 2.4e-11 | 10 |
3pha | 2.9e-10 | 6 |
3lpo | 4.7e-09 | 8 |
2x2h | 8.2e-09 | 8 |
3mo4 | 1.2e-08 | 7 |
2xvg | 2.4e-08 | 8 |
3ton | 4.3e-08 | 8 |
2xib | 1e-07 | 7 |
3eyp | 1.6e-06 | 8 |
3k1d | 3.5e-06 | 9 |
2zwy | 8.8e-06 | 9 |
3gza | 1.8e-05 | 8 |
3m07 | 2.3e-05 | 7 |
1eh9 | 0.00013 | 6 |
1gvi | 0.00035 | 8 |
1aqh | 0.00039 | 5 |
1mwo | 0.00058 | 7 |
3vmn | 0.0018 | 9 |
1bf2 | 0.0019 | 6 |
3aml | 0.0019 | 8 |
</figtable>
We performed a HHpred as well as a COMA search, to generate three distinct datasets. Since COMA did not find any homologue structures with a similarity above 41% (see <xr id="tab:datasetCOMA"/>), we used the dataset created with the HHpred search and the script described in the journal. Hereby we found one structure with a similarity above 80%, one with a similarity between 40 and 80% and 15 with sequence similarity below 30%, of which 14 had a similarity of under 20% (see <xr id="tab:datasetHHpred" />). All HHpred matches had an E-value below 1e-15, for the COMA homologues we tried a less strict threshold of 0.002.
In most of the cases we used the structures 3hg3, 1ktb and 3cc1 for modelling, because either they are the only representatives in their class, or in the case od 3cc1, the sequence identity did not seem too low.
In this case it is important to mention, that although the identity of 3hg3 is 100%, it is not the pdb structure annotated for the AGAL protein, but the structure of the substrate bound catalytic mechanism, hence the high similarity.
1ktb is the X-ray structure for the already mentioned α-N-acetylgalactosiminidase in chicken, which in future might be used for enzyme replacement therapy in the treatment of Fabry Disease.
The last one of the frequently used structures, 3cc1, is the x-ray structure of a putative α-N-acetylgalactosiminidase in in Bacillus Halodurans.
Calculation of models
Modeller
Default settings
Multiple templates
Edited Alignment input
Swissmodel
iTasser
3D-Jigsaw
Evaluation
<figure id="fig:GAL:1R47">
</figure>
As an initial step of the evaluation, we compared the apo structure 1R46 and the complex structure (with bound α-galactose) 1R47. Since the alignment of both the chains A of 1R46 and 1R47 in Pymol (see <xr id="tab:compare"/>) revealed a RMSD value of 0.248 and the comparison of the position and direction of the residues involved in the binding of the sugar (see <xr id="fig:GAL:1R47"/>) do not differ significantly, we used only the 1R46 structure for vizualisation, but computed all values and statistics for both structures.
In the right figure in <xr id="tab:compare"/>, the residues Asp92A, Asp93A, LYS168A, ARG227A and ASP231A are depicted in sticks representation (thicker); they are responsible for the binding of the sugar in the complex structures, which is shown in magenta. Clearly, one can see not much difference in this region between 1R46 and 1R47.