Difference between revisions of "Structure-based mutation analysis GLA"
(→Visual Examination of the Mutations) |
(→P205T (Mutation 6)) |
||
Line 225: | Line 225: | ||
===P205T (Mutation 6)=== |
===P205T (Mutation 6)=== |
||
+ | Since the structure of proline is a special case, the comparison of the side chain conformation is not trivial. Threonine has a higher space requirement than proline. The difference between the manual and tool-based side chain conformation is a variation of one angle in the side chain. There are two small collisions with surrounding residues (I219 and N228) due to the higher space requirements of threonine (see figure 25). |
||
− | * close to active site? |
||
− | * comparison of side chain conformation |
||
− | ** clashes? |
||
− | * polar interactions |
||
− | * hydrophobic/hydrophilic? |
||
− | * surface |
||
− | |||
+ | P205 forms two hydrogen bond with M208 and W209. The bond with M208 is also formed by T205, but the hydrogen bond to W209 is lost. Therefor a hydrogen bond to N228 is established. The substitution of proline to threonine does not have any influence on the surface of the protein. |
||
{| border="0" style="text-align:center; border-spacing:0" cellpadding="2" cellspacing="3" align = "center" |
{| border="0" style="text-align:center; border-spacing:0" cellpadding="2" cellspacing="3" align = "center" |
||
Line 238: | Line 233: | ||
| [[Image:Fabry_Disease_1R47_res205_mut.png|thumb|150px|Figure 23: Close-up of threonine (mutated) at position 205 in the protein GLA. The side chain conformation was done manually.]] |
| [[Image:Fabry_Disease_1R47_res205_mut.png|thumb|150px|Figure 23: Close-up of threonine (mutated) at position 205 in the protein GLA. The side chain conformation was done manually.]] |
||
| [[Image:Fabry_Disease_1R47_res205_tool.png|thumb|150px|Figure 24: Close-up of threonine (mutated) at position 205 in the protein GLA. The side chain conformation was done by SCRWL.]] |
| [[Image:Fabry_Disease_1R47_res205_tool.png|thumb|150px|Figure 24: Close-up of threonine (mutated) at position 205 in the protein GLA. The side chain conformation was done by SCRWL.]] |
||
+ | | [[Image:GLA_structure_mutation_mut6_clash.png|thumb|450px|Figure 21: Close-up of the clashes of T205 (red) with I219 (green) and N228 (blue). (A) The residues are shown in sticks representation. (B) Spheres representation of the residues.]] |
||
|} |
|} |
||
Revision as of 23:15, 5 September 2011
by Benjamin Drexler and Fabian Grandke
Contents
Introduction
In this task we analyse the structure of our protein to find out what effects the point mutations have. Therefore we created mutated structures and compared them to the wild-type protein. Several tools based on different methods have been used to achieve that aim. We used the mutations that we have chosen in the previous task.
Methods
In the first step of this task we had to find available protein structures for our protein and to decide which one would be the best for our detailed analysis. We set several cut-offs to exclude improper structures. The following tools have been used to perform the energy calulations. They were used as described in the task description.
SCWRL
SCWRL was initially developed by Dunbrack et al. in 1997. We use SCWRL4<ref name=dunb>G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins (2009)</ref> which was published in 2009. The program takes a PDB file and a sequence file as input. By usage of a rotamer library, collision detection, and a residue interaction graph the optimal side-chain conformation is calculated, based on the backbone and the mutated sequence given in the input files. The output is a PDB file containing the conformation and the total minimal energy of the graph in STDOUT.
FoldX
FoldX was developed by Serrano et al. in 2002<ref name=serr>Guerois R, Nielsen JE, Serrano L., Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutation. Journal of Molecular Biology (2002)</ref>. We used version FoldX 3.0 beta 4. The program provides the calculation of determination of energy effects of point mutations. It provides different run modes, but basically it takes a PDB file as input calculates several single energies(e.g. Van der Waals, Electrostatics, ...) and returns the single energies together with the total energy as output.
Minimise
Before this tool from the virtual box was used we had to remove the hydrogens and waters from the PDB file with the script repairPDB. Afterwards we were able to compare the energies differences between the wildtype and the mutated protein.
GROMACS
GROMACS is mostly a package to perform molecular dynamics, but it also provides energy calculations.
For the mutations we used the forcefield AMBER03 and for the wildtype AMBER03, AMBERGS and CHARMM27.
Additionally to the energy calculation task we did a runtime analysis with values from nsteps=10 to nsteps=1500. The results are shown in the results section of this task.
According to the task description we created an MDP file with the following content:
title = PBSA minimization in vacuum
cpp = /usr/bin/cpp
define = -DFLEXIBLE -DPOSRES
implicit_solvent = GBSA
integrator = steep
emtol = 1.0
nsteps = 500
nstenergy = 1
energygrps = System
ns_type = grid
coulombtype = cut-off
rcoulomb = 1.0
rvdw = 1.0
constraints = none
pbc = no
Keyword | Describtion<ref name=manual>Gromacs Manual</ref> |
---|---|
General | |
title | Name of Project |
cpp | Location of c-preprocessor |
Preprocessing | |
define | Defines to pass to the preprocessor; -DFLEXIBLE:include flexible water in stead of rigid water into your topology; -DPOSRES: include posre.itp into your topology, used for position restraints |
Implicit Solvent | |
implicit_solvent | Simulation with implicit solvent using the Generalized Born formalism |
Run Control | |
integrator | Steepest descent algorithm for energy minimization |
nsteps | Maximum number of steps to integrate or minimize |
Energy minimization | |
emtol | Rhe minimization is converged when the maximum force is smaller than this value |
Output | |
nstenergy | Frequency to write energies to energy file |
Tables | |
energygrps | Group(s) to write to energy file |
Neighbor searching | |
ns_type | Type of neighbor searching |
pbc | Remove the periodicity (make molecule whole again) |
Electrostatics | |
coulombtype | Type of coulomb energy |
rcoulomb | Distance for the Coulomb cut-off |
VDW | |
rvdw | distance for the LJ or Buckingham cut-off |
Bonds | |
constraints | Which constraints should be used |
Within the GROMACS work step we used the script fetchpdb. It checks if the given input is a valid PDB entry. If the check was successful it downloads the PDB file, extracts it and removes the packed version.
Results
Structure Selection
There are several structure files available for our protein:
PDB ID | Resolution [Å] | ph-Value | R-Factor | Coverage [%] | Missing Residues |
---|---|---|---|---|---|
1R46 | 3.25 | 8.0 | 0.262 | 99.7 | 422-429 |
1R47 | 3.45 | 8.0 | 0.285 | 99.5 | 422-429 |
3GXN | 3.01 | NULL | 0.239 | 88.08 | 422-429 |
3GXP | 2.20 | NULL | 0.204 | 81.9 | 422-429 |
3GXT | 2.70 | NULL | 0.245 | 97.29 | 422-429 |
3HG2 | 2.30 | 4.6 | 0.178 | 97.32 | 422-429 |
3HG3 | 1.90 | 6.5 | 0.167 | 98.64 | 427-435 |
3HG4 | 2.30 | 4.6 | 0.166 | 99.86 | 422-429 |
3HG5 | 2.30 | 4.6 | 0.192 | 100 | 422-429 |
3LX9 | 2.04 | 6.5 | 0.178 | 98.92 | 423-435 |
3LXA | 3.04 | 6.5 | 0.216 | 99.52 | 427-435 |
3LXB | 2.85 | 6.5 | 0.227 | 99.3 | 427-435 |
3LXC | 2.35 | 6.5 | 0.186 | 98.31 | 423-435 |
We set two cutoffs to decide which structures are excluded:
- ph-value: < 6.5
- resolution: > 2.7
After we applied the cutoffs to our set of structures three were left (exclusion factors are colored red in the table). One of them was slightly better than the other ones so we decided to use 3HG3 (worse values are colored gray in the table). Additionally 3GH3 has the best overall resolution and R-factor (colored green). As the missing residues are very similar for all structures they are not further taken into account.
Visual Examination of the Mutations
Figure 1 shows the protein α-galactosidase A and the residues which will be mutated. In the following sections, we compare the side chain conformation of the mutated residues and discuss the influence of the mutation. Aspects will be, inter alia, loss of polar interactions and clashes with other residues.
SCWRL was used to model the side chain conformation of the mutated residue and we use the term tool-based to describe this side chain conformation. The side chain conformation which was done according to this tutorial is referred to as manual side chain conformation.
- close to active site?
- comparison of side chain conformation
- clashes?
- polar interactions
- hydrophobic/hydrophilic?
- surface
M42T (Mutation 1)
Figures 2 to 4 show the side chain conformation of the residue 42 in α-galactosidase A. The only difference between the manual and the tool-based side chain conformation is a variation in the conformation of the hydroxyl group of threonine (see figure 3 and 4). The tool-based side chain conformation does not lead to any clashes with the surrounding residues.
The wildtype M42 has two hydrogen bonds with E87 and Y88. Since these hydrogen bonds are formed by the carboxylgroup of the backbone, they are also abundant in the mutation, but T42 also forms a hydrogen bond with G85.
A part of T42 is exposed to the surface (see figure 5B). This is no problem, since threonine is slightly hydrophilic. But the mutation introduces a small hole into the surface of GLA (see figure 5A and 5B).
S65T (Mutation 2)
The side chain conformation of the wildtype and the mutated residues is shown in figure 6 to 8. The hydroxyl and methyl group of threonine point towards totally different direction in the tool-based conformation (see figure 6 and 8), but there are no clashes with other residues. The wildtype S65 forms five hydrogen bonds with surrounding residues (C63, K67, L68, F69). The mutated residue T65 forms also five hydrogen bonds, but one of them is with E66 instead of K67.
Serine is hydrophilic and the residue is exposed on the surface, but threonine is also a hydrophilic residue. There is no remarkable change of the surface of the protein.
I117S (Mutation 3)
Since the tool-based side chain conformation of the mutated residue (see figure 11) is pretty similar to the side chain conformation of the wildtype (see figure 9), there are no clashes in the mutated structure. The angle of the hydroxyl group is slightly different in the manual side chain conformation (see figure 10).
The hydroxyl group in the backbone of I117 forms two hydrogen bonds with L120 and A121. These bonds are also abundant in the mutated structure. Serine is a hydrophilic amino acid, but this is no problem, because it is part of the surface. Overall there is no remarkable difference in the surface of the protein due to the mutation.
A143T (Mutation 4)
This is the only mutation which is close to the active site of the protein (see figure 12). The general orientation of the side chain is very similar between the wildtype, manual and tool confirmation (see figure 13, 14 and 15). The hydroxyl group of threonine leads to an increase of the space requirements with the tool-based side chain conformation. Hence there is a clash between the hydroxyl group of T143 and the residue D93 (see figure 16).
A143 forms two hydrogen bonds with the carboxyl group of its backbone to D92 and T141. These hydrogen bonds are also formed by T143, but a third hydrogen bond is established between the oxygen of the hydroxyl group of T143 and D92.
T143 is part of the surface, so it is no problem that this position becomes hydrophilic. The mutation changes the surface and since this mutation is nearby the active site, this will probably have an influence on the work rate of the protein (see figure 17). The entry to the active site becomes more narrow due to the mutation. Hence it will be less likely or even impossible that the ligand binds in the active site.
H186R (Mutation 5)
Figures 13 to 15 show the side chain conformations of the residue. The general orientation of the side chain is similar. Because of this, the residue points towards the exterior of the protein. There is small collision with the residue D153 which is located in alpha-helix nearby (see figure 16).
H186 forms three hydrogen bonds with its backbone to D182, L189 and A190, which are also formed by the mutated residue R186. Both amino acids, histidine and arginine, are hydrophobic even though the position itself is exposed on the surface. The change on the surface is not noteworthy.
P205T (Mutation 6)
Since the structure of proline is a special case, the comparison of the side chain conformation is not trivial. Threonine has a higher space requirement than proline. The difference between the manual and tool-based side chain conformation is a variation of one angle in the side chain. There are two small collisions with surrounding residues (I219 and N228) due to the higher space requirements of threonine (see figure 25).
P205 forms two hydrogen bond with M208 and W209. The bond with M208 is also formed by T205, but the hydrogen bond to W209 is lost. Therefor a hydrogen bond to N228 is established. The substitution of proline to threonine does not have any influence on the surface of the protein.
D244H (Mutation 7)
Q283P (Mutation 8)
Q321E (Mutation 9)
R363C (Mutation 10)
Energy Comparison
The results of the energy comparison are presented in the table below. Due to the fact that the result of the first run of the eighth mutation clearly differed from the other results, the run was repeated with the outcome from the first run as input. Thus, there is the number 8.2. This observation shows that minimise has a decreased tolerance for clashes in comparison to the other tools. Their results for the eighth run are not outstanding and seem not to be affected by the fact that a proline was inserted into a helix. Furthermore, their results seem to be almost equally with respect to some variance. Only the comparison of the FoldX results of the mutations with the wildtype show, that the inserted mutations have a huge influence on the energy of the protein.
Number | AA-Position | Codon change | Amino acid change | SCWRL4 | FoldX | FoldX - Diff | Minimise | Minimise - Diff |
---|---|---|---|---|---|---|---|---|
WT | - | -20.93 | - | -20481.23 | - | |||
1 | 42 | ATG-ACG | Met -> Thr | 343.25 | 157.29 | -178.22 | -20324.41 | -156.82 |
2 | 65 | AGT-ACG | Ser -> Thr | 327.798 | 152.87 | -173.8 | -20339.34 | -141.89 |
3 | 117 | ATT-AGT | Ile -> Ser | 333.027 | 157.97 | -178.9 | -20353.47 | -127.76 |
4 | 143 | cGCA-ACA | Ala -> Thr | 333.944 | 154.40 | -175.33 | -20339.32 | -141.91 |
5 | 186 | CAC-CGC | His -> Arg | 323.717 | 154.57 | -175.5 | -20321.32 | -159.91 |
6 | 205 | gCCT-ACT | Pro -> Thr | 340.619 | 155.96 | -176.89 | -20345.87 | -135.36 |
7 | 244 | gGAC-CAC | Asp -> His | 333.594 | 152.08 | -173.01 | -20393.12 | -88.11 |
8 | 283 | CAG-CCG | Gln -> Pro | 332.631 | 159.91 | -180.84 | -8027.71 | -12453.52 |
8.2 | - | - | - | - | - | - | -19134.48 | -1346,95 |
9 | 321 | tCAG-TAG | Gln -> Glu | 332.853 | 160.95 | -181.88 | -20246.98 | -234.25 |
10 | 363 | TATa-TAA | Arg -> Cys | 330.56 | 150.50 | -171.43 | -20295.77 | -185.46 |
Gromacs
Wildtype
Force Field | Average | Error Estimat | RMSD | Tot-Drift (kJ/mol) |
---|---|---|---|---|
Bond | ||||
AMBERGS | 1826.99 | 420 | 4409.39 | -2499.37 |
AMBER03 | 1639.74 | 410 | 4358.68 | -2424.42 |
CHARMM27 | 2908.14 | 350 | 4779.8 | -2033.44 |
Angle | ||||
AMBERGS | 5496.47 | 74 | 476.18 | 408.548 |
AMBER03 | 5324.13 | 72 | 469.75 | 369.24 |
CHARMM27 | 7975.2 | 86 | 798.12 | 432.901 |
Potential | ||||
AMBERGS | -114713 | 1200 | 5648.79 | -7915.46 |
AMBER03 | -91307.7 | 1200 | 5559.82 | -7839.05 |
CHARMM27 | 136.699 | 32 | 64.3892 | 227.896 |
Mutations
Force Field | Average | Error Estimat | RMSD | Tot/Drift |
---|---|---|---|---|
Bond | ||||
1 | 1815.39 | 570 | 5166.85 | -3384.48 |
2 | 1862.77 | 610 | 5331.85 | -3618.04 |
3 | 1773.13 | 520 | 4937.34 | -3068.93 |
4 | 1828.63 | 580 | 5229.18 | -3479.09 |
5 | 1870.95 | 610 | 5361.67 | -3713.22 |
6 | 1816.6 | 550 | 5091.81 | -3303.34 |
7 | 1819.7 | 570 | 5173.34 | -3397.07 |
8 | 2992.15 | 1700 | -nan | -10631.8 |
9 | 2083.16 | 830 | -nan | -4913.82 |
10 | 1867.42 | 620 | 5390.82 | -3693.03 |
Angle | ||||
1 | 5183.95 | 85 | 360.959 | 550.303 |
2 | 5195.33 | 80 | 364.473 | 515.645 |
3 | 5196.5 | 89 | 353.256 | 586.473 |
4 | 5175.59 | 85 | 364.496 | 547.465 |
5 | 5113.99 | 81 | 365.511 | 526.244 |
6 | 5200.44 | 85 | 356.964 | 553.934 |
7 | 5261.77 | 87 | 365.202 | 565.196 |
8 | 5178.73 | 76 | -nan | 215.036 |
9 | 5201.95 | 76 | -nan | 442.141 |
10 | 5174.48 | 88 | 375.775 | 555.294 |
Potential | ||||
1 | -90528.4 | 1600 | 7234.09 | -10149.1 |
2 | -90481.9 | 1600 | 7442.03 | -10340 |
3 | -90654 | 1500 | 6928.73 | -9614.54 |
4 | -90541 | 1600 | 7311.04 | -10343.7 |
5 | -91011.7 | 1600 | 7484.45 | -10592.5 |
6 | -90782.2 | 1600 | 7226.99 | -10188.5 |
7 | -90232.9 | 1600 | 7236.24 | -10198 |
8 | -87316 | 3600 | -nan | -23670.3 |
9 | -90090.3 | 1900 | -nan | -12335.3 |
10 | -89721.8 | 1700 | 7523.88 | -10750.1 |
Mutation | Plot |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
References
<references />