Difference between revisions of "Rs1054374"
(→Pysicochemical Properities) |
(→Visualisation of the Mutation) |
||
Line 36: | Line 36: | ||
=== Visualisation of the Mutation === |
=== Visualisation of the Mutation === |
||
+ | |||
+ | In the next step, we created the visualization of the muation with PyMol. Therefore we created a picture for the original amino acid, for the new mutated amino acid and finally for both together in one picture whereas the mutation is white colored. The following pictures display that the mutated amino acid Serine looks different to Isoleucine. Serine is very small whereas Isoleucine is bigger and has two spreadin chains. The first part of the rest agrees in both amino acids. In this case the difference is not so heavy, but can also cause some structural changes which can have affects on the protein function. |
||
{| border="1" style="text-align:center; border-spacing:0;" |
{| border="1" style="text-align:center; border-spacing:0;" |
Revision as of 19:58, 25 June 2011
Contents
General Information
SNP-id | rs1054374 |
Codon | 293 |
Mutation Codon | Ser -> Ile |
Mutation Triplet | AGT -> ATT |
Pysicochemical Properities
First of all, we explored the amino acid properties and compared them for the original and the mutated amino acid. Therefore we created the possible effect that the mutation could have on the protein.
Ser | Ile | consequences |
polar, tiny, hydrophilic, neutral | aliphatic, hydrophobic, neutra | Ile is much bigger than Ser and also is branched, because it is an aliphatic amino acid. Therefore the structure of both amino acids is really different and Ile is to big for the position where Ser was. Therefore, there has to be a big change in the 3D structure of the protein and the protein probably will loose its function. |
Visualisation of the Mutation
In the next step, we created the visualization of the muation with PyMol. Therefore we created a picture for the original amino acid, for the new mutated amino acid and finally for both together in one picture whereas the mutation is white colored. The following pictures display that the mutated amino acid Serine looks different to Isoleucine. Serine is very small whereas Isoleucine is bigger and has two spreadin chains. The first part of the rest agrees in both amino acids. In this case the difference is not so heavy, but can also cause some structural changes which can have affects on the protein function.
picture original aa | picture mutated aa | combined picture |
Subsitution Matrices Values
PAM 1 | Pam 250 | BLOSOUM 62 | ||||||
value aa | most frequent substitution | rarest substitution | value aa | most frequent substitution | rarest substitution | value aa | most frequent substitution | rarest substitution |
2 | 38 (Thr) | 1 (Leu) | 5 | 9 (Ala, Gly, Pro, Thr) | 3 (Phe) | -2 | 1 (Ala, Asn, Thr) | -3 (Trp) |
PSSM analysis
self-information | expected self-information | |
Ser | 1 | 10 |
Ile | 1 | 7 |
Conservation Analysis with Multiple Alignments
Secondary Structure Mutation Analysis
JPred: ...HHHHHHHHCCCEEEECCCCCHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCC... PsiPred: ...HHHHHHHHCCCEEEECCCCCHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCH...
Comparison with the real structure:
SNAP Prediction
Substitution | Prediction | Reliability Index | Expected Accuracy |
I | Neutral | 2 | 69% |
A detailed list of all possible substitutions can be found [here]
SIFT Prediction
SIFT Matrix:
Each entry contains the score at a particular position (row) for an amino acid substitution (column). Substitutions predicted to be intolerant are highlighted in red.
SIFT Table
Threshold for intolerance is 0.05.
Amino acid color code: nonpolar, uncharged polar, basic, acidic.
Capital letters indicate amino acids appearing in the alignment, lower case letters result from prediction.
|