Difference between revisions of "Fabry:Normal mode analysis"
Rackersederj (talk | contribs) (→WEBnm@) |
Rackersederj (talk | contribs) |
||
Line 1: | Line 1: | ||
[[Fabry Disease]] » Normal_mode_analysis |
[[Fabry Disease]] » Normal_mode_analysis |
||
+ | |||
− | <hr> |
||
[[Category: Fabry Disease 2012]] |
[[Category: Fabry Disease 2012]] |
||
+ | |||
+ | == Introduction == |
||
+ | <div style="float: left"> |
||
+ | <figure id="fig:bindSite"> |
||
+ | [[File:FABRY_bindingSite3HG2-3.png|300px|thumb|left|<caption>...</caption>]] |
||
+ | </figure> |
||
+ | <figure id="fig:bindSitenoSUBS"> |
||
+ | [[File:FABRY_bindingSite3HG2-3_noSUBS.png|300px|thumb|left|<caption>...</caption>]] |
||
+ | </figure> |
||
+ | </div> |
||
Maybe one of the first questions that can be asked in this task is, why we use ''low-frequency'' normal modes. This is explained in the paper of Marc Delarue and Philippe Dumas<ref>Marc Delarue and Philippe Dumas '''[http://www.pnas.org/content/101/18/6957.full.pdf On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models]''', Proc. Natl. Acad. Sci. (USA), 101, 6957-6962 (2004)</ref>, where they claim, that "many of the structural transitions (...) can be explained by just a few of the lowest-frequency normal modes". The normal modes can be used to generate the general motion of a system by superposition them. Thus we could in principle infer from our analysis in this task how the alpha-galactosidase A, which we examine hydrolyses the terminal alpha-galactosyl moiety of its substrate<ref>Normal mode [http://en.wikipedia.org/wiki/Normal_mode http://en.wikipedia.org/wiki/Normal_mode], July 5th, 2012</ref>. |
Maybe one of the first questions that can be asked in this task is, why we use ''low-frequency'' normal modes. This is explained in the paper of Marc Delarue and Philippe Dumas<ref>Marc Delarue and Philippe Dumas '''[http://www.pnas.org/content/101/18/6957.full.pdf On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models]''', Proc. Natl. Acad. Sci. (USA), 101, 6957-6962 (2004)</ref>, where they claim, that "many of the structural transitions (...) can be explained by just a few of the lowest-frequency normal modes". The normal modes can be used to generate the general motion of a system by superposition them. Thus we could in principle infer from our analysis in this task how the alpha-galactosidase A, which we examine hydrolyses the terminal alpha-galactosyl moiety of its substrate<ref>Normal mode [http://en.wikipedia.org/wiki/Normal_mode http://en.wikipedia.org/wiki/Normal_mode], July 5th, 2012</ref>. |
||
+ | <br style="clear:both"> |
||
== WEBnm@ == |
== WEBnm@ == |
||
[http://apps.cbu.uib.no/webnma/home WEBnm@] <ref>Hollup SM, Sælensminde G, Reuter N. ''WEBnm@: a web application for normal mode analysis of proteins'' BMC Bioinformatics. 2005 Mar 11;6(1):52 </ref> |
[http://apps.cbu.uib.no/webnma/home WEBnm@] <ref>Hollup SM, Sælensminde G, Reuter N. ''WEBnm@: a web application for normal mode analysis of proteins'' BMC Bioinformatics. 2005 Mar 11;6(1):52 </ref> |
||
− | <div style="float:left; border:thin solid lightgrey; margin-right: 20px; width: |
+ | <div style="float:left; border:thin solid lightgrey; margin-right: 20px; width: 650px"> |
<figtable id="tab:webnma_3hg2"> |
<figtable id="tab:webnma_3hg2"> |
||
<caption>In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG2, which represents the Human α-galactosidase catalytic mechanism with empty active site in cyan and the substrate binding site at position 203 to 207 highlighted in red.<br><br></caption> |
<caption>In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG2, which represents the Human α-galactosidase catalytic mechanism with empty active site in cyan and the substrate binding site at position 203 to 207 highlighted in red.<br><br></caption> |
||
{| style="border-style: none" |
{| style="border-style: none" |
||
− | | [[File:FABRY_mode7.gif|right| |
+ | | [[File:FABRY_mode7.gif|right|170px|thumb| WEBnm@ mode 7 of 3HG2]] |
+ | | [[File:FABRY_mode8.gif|right|170px|thumb| WEBnm@ mode 8 of 3HG2]] |
||
− | | bla |
||
+ | | [[File:FABRY_mode9.gif|right|170px|thumb| WEBnm@ mode 9 of 3HG2]] |
||
− | |- |
||
− | | [[File:FABRY_mode8.gif|right|300px|thumb| WEBnm@ mode 8of 3HG2]] |
||
− | | bla |
||
− | |- |
||
− | | [[File:FABRY_mode9.gif|right|300px|thumb| WEBnm@ mode 9of 3HG2]] |
||
− | | bla |
||
− | |- |
||
− | | [[File:FABRY_mode10.gif|right|300px|thumb| WEBnm@ mode 10of 3HG2]] |
||
− | | bla |
||
− | |- |
||
− | | [[File:FABRY_mode11.gif|right|300px|thumb| WEBnm@ mode 11of 3HG2]] |
||
− | | bla |
||
− | |- |
||
− | | [[File:FABRY_mode12.gif|right|300px|thumb| WEBnm@ mode 12of 3HG2]] |
||
− | | bla |
||
|- |
|- |
||
+ | | [[File:FABRY_mode10.gif|right|170px|thumb| WEBnm@ mode 10 of 3HG2]] |
||
+ | | [[File:FABRY_mode11.gif|right|170px|thumb| WEBnm@ mode 11 of 3HG2]] |
||
+ | | [[File:FABRY_mode12.gif|right|170px|thumb| WEBnm@ mode 12 of 3HG2]] |
||
|} |
|} |
||
</figtable> |
</figtable> |
||
</div> |
</div> |
||
− | <div style="float:left; border:thin solid lightgrey; margin-right: 20px; width: |
+ | <div style="float:left; border:thin solid lightgrey; margin-right: 20px; width: 650px"> |
<figtable id="tab:webnma_3hg3"> |
<figtable id="tab:webnma_3hg3"> |
||
<caption>In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG3, which represents the Human α-galactosidase catalytic mechanism with bound substrate (green, α-D-Galactose with bound α-D-Glucose) in cyan and the substrate binding site at position 203 to 207 highlighted in red.</caption> |
<caption>In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG3, which represents the Human α-galactosidase catalytic mechanism with bound substrate (green, α-D-Galactose with bound α-D-Glucose) in cyan and the substrate binding site at position 203 to 207 highlighted in red.</caption> |
||
{| style="border-style: none" |
{| style="border-style: none" |
||
− | | [[File:FABRY_mode7_3hg3.gif|right| |
+ | | [[File:FABRY_mode7_3hg3.gif|right|170px|thumb| WEBnm@ mode 7 of 3HG3]] |
+ | | [[File:FABRY_mode8_3hg3.gif|right|170px|thumb| WEBnm@ mode 8 of 3HG3]] |
||
− | | bla |
||
+ | | [[File:FABRY_mode9_3hg3.gif|right|170px|thumb| WEBnm@ mode 9 of 3HG3]] |
||
|- |
|- |
||
− | | [[File: |
+ | | [[File:FABRY_mode10_3hg3.gif|right|170px|thumb| WEBnm@ mode 10 of 3HG3]] |
+ | | [[File:FABRY_mode11_3hg3.gif|right|170px|thumb| WEBnm@ mode 11 of 3HG3]] |
||
− | | bla |
||
+ | | [[File:FABRY_mode12_3hg3.gif|right|170px|thumb| WEBnm@ mode 12 of 3HG3]] |
||
+ | |} |
||
+ | </figtable> |
||
+ | </div> |
||
+ | <br style="clear:both"> |
||
+ | === Average Energies === |
||
+ | <div style="float:left; border:thin solid lightgrey; margin: 0px 0px 0px 0px;"> |
||
+ | <figtable id="tab:AverageEnergies"> |
||
+ | <caption>ADD CAPTION HERE</caption> |
||
+ | {| class="wikitable sortable" style="border-collapse: collapse; border-spacing: 0; border-width: 1px; border-style: solid; padding-left:5px; padding-right:5px; border-color: #000; padding: 0" |
||
+ | ! style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 2px 0;"| 3HG2 |
||
+ | ! style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 2px 0;"| 3HG3 |
||
|- |
|- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 406.07 |
||
− | | [[File:FABRY_mode9_3hg3.gif|right|300px|thumb| WEBnm@ mode 9of 3HG3]] |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 318.52 |
||
− | | bla |
||
|- |
|- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 580.11 |
||
− | | [[File:FABRY_mode10_3hg3.gif|right|300px|thumb| WEBnm@ mode 10of 3HG3]] |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 508.88 |
||
− | | bla |
||
|- |
|- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1062.04 |
||
− | | [[File:FABRY_mode11_3hg3.gif|right|300px|thumb| WEBnm@ mode 11of 3HG3]] |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1078.20 |
||
− | | bla |
||
|- |
|- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1703.56 |
||
− | | [[File:FABRY_mode12_3hg3.gif|right|300px|thumb| WEBnm@ mode 12of 3HG3]] |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1621.95 |
||
− | | bla |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1808.92 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 1827.08 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 2227.10 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 2019.97 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 2541.59 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 2481.89 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3109.43 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 2695.35 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3345.86 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3321.12 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3842.69 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3588.18 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 4868.07 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 3782.94 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 5178.29 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 4404.61 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 6119.79 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 5349.94 |
||
+ | |- |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 5940.89 |
||
+ | | style="border-style: solid; padding-left:5px; padding-right:5px; border-width: 0 1px 1px 0;"| 6027.59 |
||
|- |
|- |
||
|} |
|} |
||
</figtable> |
</figtable> |
||
</div> |
</div> |
||
+ | <br style="clear:both"> |
||
<br style="clear:both"> |
<br style="clear:both"> |
||
== ElNemo == |
== ElNemo == |
||
+ | |||
− | == ElNemo == |
||
+ | <br style="clear:both"> |
||
== References == |
== References == |
Revision as of 09:10, 9 July 2012
Fabry Disease » Normal_mode_analysis
Introduction
Maybe one of the first questions that can be asked in this task is, why we use low-frequency normal modes. This is explained in the paper of Marc Delarue and Philippe Dumas<ref>Marc Delarue and Philippe Dumas On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models, Proc. Natl. Acad. Sci. (USA), 101, 6957-6962 (2004)</ref>, where they claim, that "many of the structural transitions (...) can be explained by just a few of the lowest-frequency normal modes". The normal modes can be used to generate the general motion of a system by superposition them. Thus we could in principle infer from our analysis in this task how the alpha-galactosidase A, which we examine hydrolyses the terminal alpha-galactosyl moiety of its substrate<ref>Normal mode http://en.wikipedia.org/wiki/Normal_mode, July 5th, 2012</ref>.
WEBnm@
WEBnm@ <ref>Hollup SM, Sælensminde G, Reuter N. WEBnm@: a web application for normal mode analysis of proteins BMC Bioinformatics. 2005 Mar 11;6(1):52 </ref>
<figtable id="tab:webnma_3hg2">
In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG2, which represents the Human α-galactosidase catalytic mechanism with empty active site in cyan and the substrate binding site at position 203 to 207 highlighted in red.
</figtable>
<figtable id="tab:webnma_3hg3"> In this table are the 6 modes shown, that were calculated by WEBnm@. Depicted is the structure 3HG3, which represents the Human α-galactosidase catalytic mechanism with bound substrate (green, α-D-Galactose with bound α-D-Glucose) in cyan and the substrate binding site at position 203 to 207 highlighted in red.
</figtable>
Average Energies
<figtable id="tab:AverageEnergies"> ADD CAPTION HERE
3HG2 | 3HG3 |
---|---|
406.07 | 318.52 |
580.11 | 508.88 |
1062.04 | 1078.20 |
1703.56 | 1621.95 |
1808.92 | 1827.08 |
2227.10 | 2019.97 |
2541.59 | 2481.89 |
3109.43 | 2695.35 |
3345.86 | 3321.12 |
3842.69 | 3588.18 |
4868.07 | 3782.94 |
5178.29 | 4404.61 |
6119.79 | 5349.94 |
5940.89 | 6027.59 |
</figtable>
ElNemo
References
<references/>