Difference between revisions of "Fabry:Homology based structure predictions/Journal"
Rackersederj (talk | contribs) (→RMSD with SAP) |
Rackersederj (talk | contribs) (→Default settings) |
||
Line 26: | Line 26: | ||
GPRSYTIAVASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPTGTVLLQLENT |
GPRSYTIAVASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPTGTVLLQLENT |
||
MQMSLKDLL* |
MQMSLKDLL* |
||
+ | The first script creates an alignment only based on the structure of template and target, as well as a 2d-alignment also based on the given structural data. The second script creates the actual model and assesses it, based on the DOPE score and the GA341 method (see [http://salilab.org/pdf/Melo_ProteinSci_2002.pdf Melo et al., 2002] and [http://salilab.org/pdf/John_NucleicAcidsRes_2003.pdf John & Šali, 2003]). |
||
The following runs were performed on our home computers: |
The following runs were performed on our home computers: |
||
#3HG3 100% |
#3HG3 100% |
||
Line 40: | Line 41: | ||
The vizualisation was done with the help of Pymol and the commands listed in [https://www.dropbox.com/s/29lh6pxgxuxgeoi/pymol_single.txt pymol_single.txt] |
The vizualisation was done with the help of Pymol and the commands listed in [https://www.dropbox.com/s/29lh6pxgxuxgeoi/pymol_single.txt pymol_single.txt] |
||
+ | |||
==== Multiple templates ==== |
==== Multiple templates ==== |
||
For multiple templates three scripts are needed, which again base on the [[Using_Modeller_for_TASK_4 | tutorial]] and are here again only exemplified for one case: [https://www.dropbox.com/s/llx00q42jiym0zo/3_multiAli_1.py 3_multiAli_1.py], [https://www.dropbox.com/s/mntoiuphufx5fjh/4_add1R46_1.py 4_add1R46_1.py] and [https://www.dropbox.com/s/dz1sgsad1knpe8s/5_multipleMod_1.py 5_multipleMod_1.py] |
For multiple templates three scripts are needed, which again base on the [[Using_Modeller_for_TASK_4 | tutorial]] and are here again only exemplified for one case: [https://www.dropbox.com/s/llx00q42jiym0zo/3_multiAli_1.py 3_multiAli_1.py], [https://www.dropbox.com/s/mntoiuphufx5fjh/4_add1R46_1.py 4_add1R46_1.py] and [https://www.dropbox.com/s/dz1sgsad1knpe8s/5_multipleMod_1.py 5_multipleMod_1.py] |
Revision as of 09:39, 25 May 2012
Fabry Disease » Homology based structure predictions » Journal
Contents
Dataset preparation
The homology search was performed online and resulted in the two output files hhpred.out and coma.out for the structure search with HHpred and COMA, respectively. In both cases, we used the default values, thresholds and databases. From both the resulting files we tried in each case to create three distinct datasets with the demanded sequence identity to the target protein with the following calls and scripts.
perl make_dataset_hhpred.pl hhpred.out 0.0000000000000001
This resulted in the HHpred datasets mentioned in Dataset preparation Table 1 and the corresponding pdb structure files.
perl make_dataset_coma.pl coma.out 0.002
This resulted in the Coma datasets mentioned in Dataset preparation Table 2 and the corresponding pdb structure files.
Calculation of models
Modeller
The following steps resulted in 10 models, which can all be downloaded here.
Default settings
For the standard homology modeling with Modeller two basic scripts were used, which build up on the ones described in the recommended tutorial: 1_align.py and 2_Single_template_modeling.py (in this case example file for 1ktb) which need the appropriate template pdb structure files, as well as the target (AGAL) sequence in pir format as input:
>P1;1R46 sequence:1R46:::::::0.00: 0.00 MQLRNPELHLGCALALRFLALVSWDIPGARALDNGLARTPTMGWLHWERFMCNLDCQEEP DSCISEKLFMEMAELMVSEGWKDAGYEYLCIDDCWMAPQRDSEGRLQADPQRFPHGIRQL ANYVHSKGLKLGIYADVGNKTCAGFPGSFGYYDIDAQTFADWGVDLLKFDGCYCDSLENL ADGYKHMSLALNRTGRSIVYSCEWPLYMWPFQKPNYTEIRQYCNHWRNFADIDDSWKSIK SILDWTSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQVTQMALWAIMAAPLFMSNDL RHISPQAKALLQDKDVIAINQDPLGKQGYQLRQGDNFEVWERPLSGLAWAVAMINRQEIG GPRSYTIAVASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPTGTVLLQLENT MQMSLKDLL*
The first script creates an alignment only based on the structure of template and target, as well as a 2d-alignment also based on the given structural data. The second script creates the actual model and assesses it, based on the DOPE score and the GA341 method (see Melo et al., 2002 and John & Šali, 2003). The following runs were performed on our home computers:
#3HG3 100% mod9.10 1_align_3hg3.py mod9.10 2_Single_template_modeling_3hg3.py #1KTB 53% mod9.10 1_align.py mod9.10 2_Single_template_modeling.py #3CC1 25% mod9.10 1_align_3cc1.py mod9.10 2_Single_template_modeling_3cc1.py
The vizualisation was done with the help of Pymol and the commands listed in pymol_single.txt
Multiple templates
For multiple templates three scripts are needed, which again base on the tutorial and are here again only exemplified for one case: 3_multiAli_1.py, 4_add1R46_1.py and 5_multipleMod_1.py The following combinations were performed:
#Multiple 3HG3,1KTB mod9.10 3_multiAli_1.py mod9.10 4_add1R46_1.py mod9.10 5_multipleMod_1.py #Multiple 3HG3,1KTB,3CC1 mod9.10 3_multiAli_2.py mod9.10 4_add1R46_2.py mod9.10 5_multipleMod_2.py #Multiple 3CC1, 3ZSS, 3A24 mod9.10 3_multiAli_3.py mod9.10 4_add1R46_3.py mod9.10 5_multipleMod_3.py #Multiple 3CC1, 3HG3 mod9.10 3_multiAli_4.py mod9.10 4_add1R46_4.py mod9.10 5_multipleMod_4.py
The vizualisation was done with the help of Pymol and the commands listed in pymol_multi.txt
Edited Alignment input
For the edited alignment models, only the second Modeller script 2_Single_template_modeling.py was needed. Edited alignments were provided as input. We rearranged them with the program SeaView.
#Active Site shifted right to next D (7 and 1) in -2d.ali mod9.10 2_Single_template_modeling_3hg3_changed_actSite.py #Active Site shifted right to next D (7 and 1) in both ali files mod9.10 2_Single_template_modeling_3hg3_changed_actSite_2.py #Active Site shifted right to next D (7 and 1) in both ali files + Substrate binding region (203-207) forced to be consecutive mod9.10 2_Single_template_modeling_3hg3_changed_actSite_3.py
The vizualisation was done with the help of Pymol and the commands listed in pymol_changed.txt
Swissmodel
iTasser
3D-Jigsaw
Evaluation
TM-score
The scores were computed on a home computer with the TM-score version of 2012/05/07. We used a bash script, which calls the TM-score program for all models, as well as the perl script read_TMoutput.perl that extracts the calculated scores and automatically outputs them in Media-wiki table format into a file. The bash script requires the template pdb file and the directory in which all models are located as input.
#MODELLER ./calculate_TMScore.sh ../Modeller/pdb/1R46.pdb ../Modeller/final_models/ ./calculate_TMScore.sh ../Modeller/pdb/1R47.pdb ../Modeller/final_models/ #SWISSMODEL ./calculate_TMScore.sh ../Modeller/pdb/1R46.pdb ../Swissmodel/final_models/ ./calculate_TMScore.sh ../Modeller/pdb/1R47.pdb ../Swissmodel/final_models/
RMSD with SAP
Due to some server errors, we calculated most of the RMSD values online with the SAP Web Tool. From this we obtained the same output as from the command line tool. The output was read by another pair of bash and perl script, to extract the calculated scores and create a table.
./readRMSD.sh
The pngs used for the animated gifs were created with Pymol and the commands listed in pdb_superimpose.txt. Afterwards the pngs were animated with the program GIF Movie Gear.