Structure-based mutation analysis

Practical Bioinformatics 'Protein Structure and Function Analysis'

Karolina Worf

02. July 2013

Overview

- Introduction
 - Protein structure level
 - Molecular mechanics
- Force fields
- Methods
 - SCWRL
 - $\circ \ \ \mathsf{Fold}\mathsf{X}$

Introduction

Level of protein structure:

- Primary structure: Amino acid sequence
- Secondary structure: areas of folding and coiling of the amino acid sequence, stabilized by hydrogen bonds (α-helices, β-sheets, coiled regions)
- **Tertiary structure:** final 3-D structure of the polypeptide chain of a protein
- Quarternary structure: protein consisting of more than one polypeptid chain

http://upload.wikimedia.org/wikipedia/ commons/c/c9/Main_protein_structure_ levels_en.svg

Introduction

• What effect has a mutation (SNP) on the protein structure?

- No effect?
- Changes the structure? => interactions between molecules (energy of protein)

• How to find out? Required steps?

- Calculate energy of wild-type and mutated protein
- Compare the energy results
- Check whether changes in the structure can be found

How to calculate the energy of a protein?

• Quantum mechanics (QM):

- Calculates energy via all electrons in a system
 - + Most accurate method
 - Time consuming!

• Molecular mechanics (MM):

- $\circ~$ Calculates energy of a system as a function of nuclear positions
 - + Fast and easy to calculate
 - Ignores electronic motions

The energy function (force field) of a molecular system is defined as a sum of terms, which includes:

- Bonded interactions
 - Bond stretching
 - Angle bending
 - Bond rotation (Torsion)
- Non-bonded interactions
 - Electrostatic interactions
 - Van der Waals interactions

http://www.accessscience.com/loadBinary.aspx? filename=757328FG0020.gif

General formula:

$$E = E_{bonds} + E_{angles} + E_{torsions} + E_{vdW} + E_{ES}$$

Bonded interactions

Intramolecular energy term which is associated with the deformation of the electronic structure of the molecule.

Bond stretching

• Hooke's law formula: $v(l) = \frac{k}{2}(l - l_0)^2$

- Angle bending
 - Also calculated by Hooke's law
- Bond rotation (Torsion)
 - Contribution of each bonded quartet: $v(\omega) = \sum_{n=0}^{N} \frac{V_n}{2} (1 + \cos(n\omega - \gamma))$ $\omega = \text{torsionangle}$

http://www.accessscience.com/loadBinary. aspx?filename=757328FG0020.gif

Non-bonded interactions

Inter- and intramolecular interactions occuring from electrostatic (through-space) interactions.

Electrostatic interactions

- Charge distribution between molecules
- Calculated by Coulomb law: $E = \sum_{i=1}^{N_{A}} \sum_{j=1}^{N_{B}} \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r - ij}$
- Van der Waals interactions
 - Described by Lennard-Jones equation: $v(r) = 4\epsilon[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6]$

http://www.accessscience.com/loadBinary. aspx?filename=757328FG0020.gif

Sum of all terms: $\sum_{bonds} k_b (r - r_0)^2 + \sum_{angles} k_a (\theta - \theta_0)^2 + \sum_{dibbedrals} k_d [1 + \cos(n\varphi - \delta)] + \sum_{i < j} \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}} + \sum_{i < j} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]$

http://www.ch.embnet.org/CoursEMBnet/Basel05/Day1_Intro.pdf

Features:

- Transferability of functional form and parameters
- Empirical there is no 'correct' formular

Methods

SCWRL4 - Side-chain Confirmation Prediction With Rotamer Library

- predicts side-chain confirmations
- uses backbone-dependent rotamer library
- based on graph theory
- fast and accurate
- ease-of-use

Input:

- PDB-file with backbone coordinates
- Sequence file with mutated sequence Example: rhiSpqaKallqdkdviAinqdplgk

SCWRL4 - basic steps

- Inputting data and constructing side chain coordinates with rotamer library
- Calculating energies (self/pairwise)
- Graph computation, with symmetry operators if any
- Combinatorial optimization via edge decomposition, dead-end elimination and tree decomposition of each cluster
- Outputting results

Georgii G. Krivov et al. (2009): Improved prediction of protein side-chain conformations with SCWRL4. Proteins Vol. 77(4): 778-795. doi:10.1002/prot.22488

SCWRL

Output:

- PDB-File: coordinates for the structure with predicted side-chains
- StdOut (Examples):
 - \circ Total minimal energy of the graph = 115.41 (without mutations)
 - \circ Total minimal energy of the graph = 972.97 (with mutations)

$\mathsf{Fold}\mathsf{X}$

- Fast and accurate estimation of mutational free energy changes (effect of SNPs) on the protein stability
- Approach: 'Multiple mutations using individual list'

Input (command line version)

- Manual mode:
 - PDB-File
 - Option file
 - Command file
- Runfile mode:
 - Run-File for 1 or more jobs

FoldX - Force fields

$$\begin{split} \Delta G &= a \cdot \Delta G_{vdw} + b \cdot \Delta G_{solvH} + c \cdot \Delta G_{solvP} + d \cdot \Delta G_{wb} + e \cdot \Delta G_{hbond} + \\ f \cdot \Delta G_{el} + g \cdot \Delta G_{kon} + h \cdot T \cdot \Delta S_{mc} + k \cdot T \cdot \Delta S_{sc} + l \cdot \Delta G_{clash} \end{split}$$

a-I:	Relative weights
$\Delta G / \Delta S$:	Gibbs free energy (experimental data/theoretical estimates)
vdw:	Van der Waals
solvH/solvP:	Solvation energy for hydrophobic/polar groups
wb:	Water bridges
hbond:	Hydrogen-bonds
el:	Electrostatic
kon:	Reflects the effect of electrostatic interactions to k_{on}
mc/sc:	Entropy cost fixing backbone in folded state/side chain in par-
	ticular confirmation
clash:	steric overlaps between atoms in the structure

FoldX

Examples can be found on the FoldX web server: http://foldx.crg.es/

Output:

- PDB-File: one for each mutant and corresponding wild-type
- *Dif-File*: difference in energy between the mutation and the corresponding wild-type reference (Positive numbers = less stability)
- *PDBList-File*: List of all created PDB Files
- Raw-File: stability for each PDB

Thank you for your attention! Any questions?

References

- http://www.vivo.colostate.edu/hbooks/genetics/biotech/ basics/prostruct.html
- www.ch.embnet.org/CoursEMBnet/Basel05/Day1_Intro.pdf
- Andrew R. Leach (2001): *Molecular Modelling: Principles and Applications (Second Edition)*. Pearson Education Limited 1996, 2001.
- Georgii G. Krivov et al. (2009): Improved prediction of protein side-chain conformations with SCWRL4. Proteins Vol. 77(4): 778-795.
- Joost W.H. Schymkowitz et al. (2005): *The FoldX web server: an online force field*. Nucleic Acids Research Vol.33: W382-W388.
- Joost W.H. Schymkowitz et al. (2005): Prediction of water and metal binding sites and their affinities by using the Fold-X force field. PNAS Vol.102(29):10147-10152.
- FoldX Description and User Manual Version 3.0