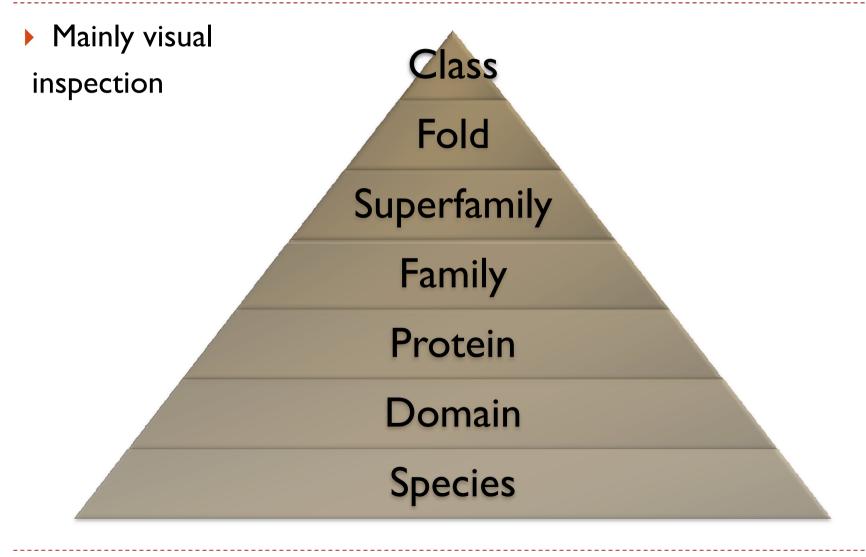
Structural Alignments

28.5.2013 Katharina Hembach

Outline

- I. Recap: SCOP and CATH databases
- 2. Structural alignment methods and scores:
 - I. SSAP
 - 2. TopMatch
 - 3. CE
 - 4. LGA


3D classification

tells us about

- → function
- \rightarrow evolution
- of unknown proteins
- helps to annotate proteins

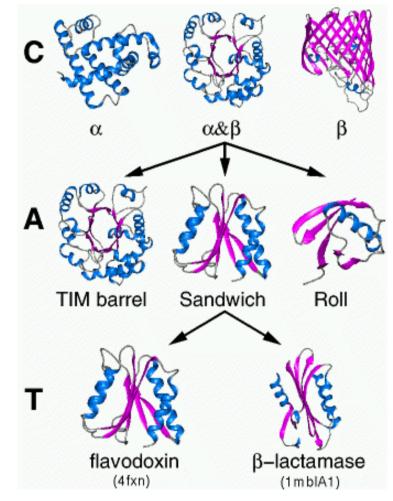
SCOP (structural classification of proteins)

SCOP

(structural classification of proteins)

classes

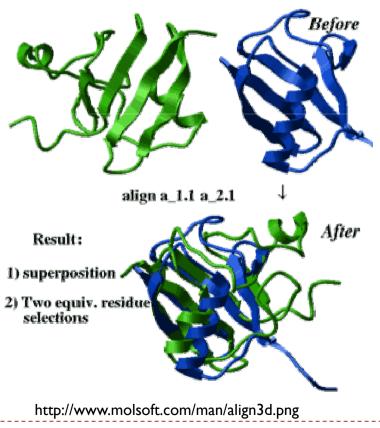
- alpha
- beta
- alpha and beta (a/b)
- alpha plus beta (a+b)
- multi-domain proteins
- membrane and cell-surface proteins and peptides
- small proteins
- coiled coil proteins
- Iow-resolution protein structures
- peptides
- designed proteins


CATH

Class: mainly-alpha, mainly-beta, alpha-beta, low secondary structure

Architecture: shape of domain structure

Topology (Fold family): shape and connectivity of secondary structures


Homology: groups families that have a common ancestor

http://protein.hbu.cn/cath/cathwww.biochem.ucl.ac. uk/latest/cath_info.html

Structural alignment

- Superposition of two structures
- I. find corresponding positions
- 2. compute best superposition
- Calculate score

28.5.2013 Katharina Hembach

RMSD (root mean square deviation)

 squared distance between corresponding positions (typically Cα) of two superimposed proteins A and B

$$RMSD(A,B) = \sqrt{\frac{1}{N}\sum_{i=1}^{N}d_i^2}$$

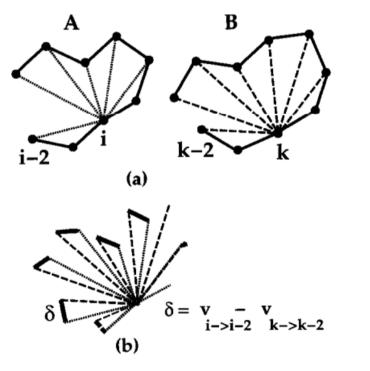
• where
$$d_i^2 = (a_i - b_i)^2$$

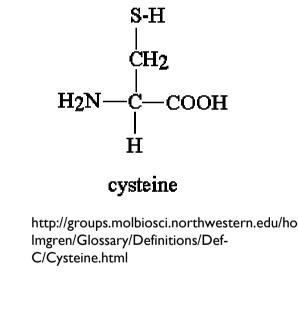
 d_i is the distance between two corresponding points a_i and b_i

Structural alignment methods

• For example:

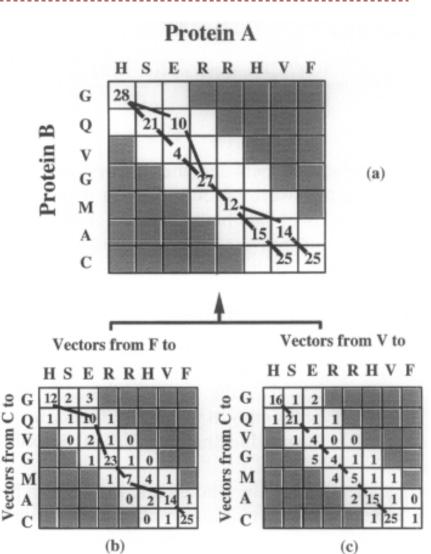
SSAP


- TopMatch
- ► CE
- LGA


SSAP

(sequential structural alignment programm)

I. compute residue view of each residue: set of distance vectors from $C\beta$ to $C\beta$ of all other residues


WR Taylor & CA Orengo (1996) Meth. in Enzym. 266:617-635

very similar structures
→ compare by subtracting equivalent
vectors

SSAP

- 2. double dynamic programming
- Align all residue views to find corresponding residues.
- Align the residues and find optimal path trough summary matrix.

WR Taylor & CA Orengo (1996) Meth. in Enzym. 266:617-635

28.5.2013 Katharina Hembach

TopMatch

- query structure Q is aligned to target structure T
- ranked list of possible alignments
- which are combined to composite alignment
- structures represented by Cα atoms
- Multiple chains joined to single chain

TopMatch score

L = length of A, not counting gaps

• Root mean square error : $E_r = \sqrt{\frac{1}{I} \sum r_i^2}$

where

$$r_i = (x_i - y_i)$$

 $S = \sum_{i}^{L} e^{-r_i^2/\sigma^2}$ with scaling factor σ

Similarity per residue:

$$s = \frac{S}{L} = \frac{1}{L} \sum_{i}^{L} e^{-r_i^2/\sigma^2}$$

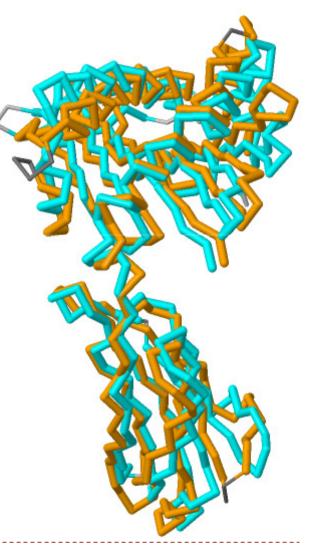
• Distance error
$$S_r$$
: $S_r = \sigma \sqrt{-\ln s}$

Example

Composite alignment between
HFE protein (IA6Z,A) and
MHC class I molecule (IBII,A)

- Query: blue (orange),
- Target: green (red)
- ▶ L = 266
- ▶ S = 226
- ► S_r = 2.81
- ▶ E_r = 2.98

CE (combinatorial extension)


- I. Compute all possible AFPs (aligned fragment pairs): confer structural similarity
 - Based on local geometry
 - Fixed size m (e.g. 8)
- 2. Heuristics used to define a set of optimal paths joining AFPs with gaps as needed
- 3. Optimization of the path with the best RMSD using dynamic programming
- → Optimal alignment

example

alignment between
HFE protein (IA6Z,A) and
MHC class I molecule (IBII,A)

- HFE in orange
- MHC class I molecule in cyan

RMSD = 2.63

LGA (local global alignment)

- Takes both local and global structure superpositions into account
- 2 methods:
 - I. LCS (longest continuous segments)
 - 2. GDT (global distance test)

Used to detect regions of local and global structural similarity

LCS

- Localize and superimpose the longest continuous segments of residues under a RMSD cutoff
- ▶ cutoff = 1, 2, 5 Å
- LCS_vi = % of continuous residues that can fit under RMSD cutoff vi
- identifies local regions of similarity

GDT

- finds largest set of corresponding residues deviating no more than distance cutoff
- cutoff = 0.5, 1.0, 1.5, .., 10 Å
- GDT_vi = % of residues (largest set) that can be superimposed under the distance cutoff of vi
- \rightarrow sequence continuity not maintained
- \rightarrow global level of similarity
- Scoring function LGA_S combines all LCS_vi and GDT_vi

LGA – example result

 alignment between HFE protein (IA6Z,A) and MHC class I molecule (IBII,A):

#CA	N1	N2	DIST	Ν	RMSD	Seq_Id	LGA_S	LGA_Q
SUMMARY (LGA)	272	274	5.0	253	2.37	36.36	63.924	10.228

N = number of superimposed residues under distance cutoff 5
Å

Thany you.

Any questions?

28.5.2013 Katharina Hembach

References

- I. http://scop.mrc-lmb.cam.ac.uk/scop/
- 2. A Murzin (1995), SCOP: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures, JMB 247:536-540
- 3. http://protein.hbu.cn/cath/cathwww.biochem.ucl.ac.uk/latest/cath_info.html
- WR Taylor & CA Orengo (1989), Protein structure alignment, JMB 208:1-22
- WR Taylor & CA Orengo (1996), SSAP: Sequential Structure Alignment Program for Protein Structure Comparison, Methods in Enzymology 266:617-635
- 6. MJ Sippl & M Wiederstein (2012), Detection of spatial correlations in protein structures and molecular complexes, Structure 20:718-728
- 7. MJ Sippl & M Wiederstein (2008), A note on difficult structure alignment problems, Bioinformatics 24(3):426–427

- 8. IN Shindyalov & P Bourne (1998), Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Prot Engineering 1:739-47
- 9. http://source.rcsb.org/jfatcatserver/help.jsp
- 10. A Zemla (2003), LGA: a method for finding 3D similarities in protein structures, Nucleic Acids Research 31:3370-3374
- II. http://proteinmodel.org/AS2TS/LGA/lga_format.html