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ABSTRACT The identification of dynami-
cal domains in proteins and the description of
the low-frequency domain motions are one of
the important applications of numerical simu-
lation techniques. The application of these
techniques to large proteins requires a substan-
tial computational effort and therefore cannot
be performed routinely, if at all. This article
shows how physically motivated approxima-
tions permit the calculation of low-frequency
normal modes in a few minutes on standard
desktop computers. The technique is based on
the observation that the low-frequency modes,
which describe domain motions, are indepen-
dent of force field details and can be obtained
with simplified mechanical models. These mod-
els also provide a useful measure for rigidity in
proteins, allowing the identification of quasi-
rigid domains. The methods are validated by
application to three well-studied proteins,
crambin, lysozyme, and ATCase. In addition to
being useful techniques for studying domain
motions, the success of the approximations
provides new insight into the relevance of
normal mode calculations and the nature of
the potential energy surface of proteins. Pro-
teins 33:417-429,1998. © 1998 Wiley-Liss, Inc.
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INTRODUCTION

In the analysis of protein dynamics, an important
goal is the description of slow large-amplitude mo-
tions in large proteins. These motions typically
describe rearrangements of domains which are essen-
tial for the function of the protein. Only such global
motions can change the exposed surface of the
protein significantly and hence influence interac-
tions with its environment. Higher frequency mo-
tions are more localized in the interior or on the
surface of the protein. However, this does not mean
that they are irrelevant; they can play an important
role in signal transmission mechanisms and other
internal processes. Indeed, the frequently observed
strong influence of single-residue mutations, which
are expected to cause only local changes in conforma-
tion and dynamics, on protein function indicates a
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higher significance of medium frequency motions
than is commonly supposed.

One of the standard techniques for studying pro-
tein dynamics, and in particular low-frequency do-
main motions, is normal mode analysis.! In contrast
to phase space sampling techniques, such as molecu-
lar dynamics, normal mode analysis provides a very
detailed description of the dynamics around a local
energy minimum. The technique has important limi-
tations (harmonic approximation, neglect of solvent
damping, no information about energy barriers and
crossing events); nevertheless, it has provided much
useful insight into protein dynamics. Its most impor-
tant contribution is the identification and character-
ization of the low-frequency domain motions. In
contrast, the corresponding vibrational frequencies
obtained by normal mode analysis are of little physi-
cal relevance, because the real frequencies are
strongly influenced by anharmonic effects®3® and
solvent damping.*6 In fact, low-frequency motions
in a realistic environment are overdamped and
hence not vibrational at all.

Various studies have shown that the assumption
of harmonic motion, which is implicit in normal
mode analysis, is justified for medium- and high-
frequency modes but not for the slow modes that
correspond to domain motion.237 Furthermore, mo-
lecular dynamics simulations® and experiments® have
shown the existence of conformational substates,
corresponding to multiple minima of the potential
energy that are accessible by thermal fluctuations.
The practical relevance of normal mode analysis
therefore seems questionable, because it explores
only one specific (and arbitrarily chosen) minimum.
Moreover, collective motions at physiological tem-
peratures are not determined by the potential en-
ergy surface, but by the potential of mean force
expressed as a function of a smaller set of “slow”
variables, which is a much smoother function. Acompari-
son of normal modes in several closely spaced local
minima of Bovine Pancreatic Trypsin Inhibitor (BPTI)°
has shown that there is an observable variation of the
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low-frequency modes, but this variation occurs within a
well-defined subspace. Comparisons of low-frequency
normal modes and the directions of large-amplitude
fluctuations in molecular dynamics simulations indicate
clear similarities.®” All these observations suggest that
dynamical domains and their motions are well defined
and can be analyzed using a variety of techniques. On
the other hand, the assignment of time scales and
amplitudes to these motions requires a detailed model
that incorporates anharmonic and solvent effects.

A major practical problem with normal mode
analysis is its use of memory (O(N?), where N is the
number of atoms in the protein) and CPU time
(O(N?3)). Its direct application is therefore limited to
small molecules up to approximately 2,000 atoms.
Larger systems can be handled by reducing the
number of degrees of freedom. A commonly used
approximation is the elimination of all bonds and
bond angles, leaving only the dihedral angles (or
even a subset of all dihedral angles) free to change.
However, more severe mechanical constraints such
as rigid domains have been proposed,” as well as
more complicated coordinate sets that are not simply
a subset of the standard internal coordinates.!* The
disadvantage of constraint methods is that in addi-
tion to eliminating “uninteresting” modes, they
modify the remaining ones. Another approach to
treating larger systems is the calculation of only the
lowest modes. This is achieved by partitioning meth-
ods that divide either the physical system according
to geometrical criterial? or the second derivative
matrix by imposing a block structure!® into pieces
that can be diagonalized exactly. The low-frequency
contributions from all parts are then combined to
form a reduced basis for treating the complete sys-
tem. Such methods can deal with very large sys-
tems?* but still require computational resources that
are not easily available.

In this article, several physical approximations
are presented that permit the calculation of low-
frequency modes with a much reduced computa-
tional effort. For example, a good approximation to
the low-frequency modes of ATCase, whose exact
calculation required 690 hours on a Cray C98 super-
computer (Cray Research, Eagan, MN),# could be
obtained in just 9 minutes on a personal computer.
Although approximate, this method is sufficiently
accurate to allow the identification of rigid domains
and flexible regions in a protein as well as the
determination of the principal large-scale motions.
However, no effort is made to obtain physically unreli-
able data accurately, specifically the vibrational frequen-
cies and the highly artificial thermodynamical ampli-
tudes that are commonly derived from them. The
success of the approximations also provides further
insight into the nature of protein energy surfaces.

The fundamental principle on which all methods
presented in this article are based is the fact that
low-frequency modes represent global movements of

large domains, whereas high-frequency modes corre-
spond to localized motions involving few atoms. This
is a very general observation, which is due to two
mechanisms. First, global domain motions have no
(or very little) energy contribution from internal
degrees of freedom of the domains because there is
no deformation. Second, the long-range interactions
between domains are weaker than the short-range
interactions between neighboring atoms. This prin-
ciple is used first to find an appropriate small
subspace for calculating low-frequency modes, and
in a second step to obtain a much simplified force
field for approximate normal mode calculations. This
simplified force field also provides a straightforward
method for identifying dynamical domains by calcu-
lating the energy density associated with local defor-
mations due to the normal modes.

METHODS
Normal Modes in a Subspace

To establish the notation for the following sections,
the standard normal mode analysis procedure is
briefly reviewed here. For details and derivations,
the reader should consult textbooks on classical
mechanics (e.g., Goldstein®®) and linear algebra.

Normal mode analysis begins with the calculation
of the second derivative matrix H of the potential
energy at a local minimum. This matrix is of size
3N X 3N, where N is the number of atoms in the
molecule. The mass-weighted second derivative ma-
trix is defined by H* = M~Y2. H . M ~12 where M is
a diagonal 3N X 3N matrix containing the atomic
masses. The normal modes are the eigenvectors of
H* (in mass-weighted Cartesian coordinates), and
the corresponding eigenvalues are the squares of the
vibrational frequencies. The limiting factors in nor-
mal mode analysis are the memory requirements for
storing the matrix H* and the CPU time for the
eigenvalue calculation.

Normal modes can be calculated in any set of
coordinates, not only in the commonly used Carte-
sian coordinates. To obtain normal modes in a set of
coordinates ¢;, i = 1...3N, the transformation
matrix C between the differentials of these coordi-
nates and those of the mass-weighted Cartesian
coordinates x¥ i = 1...3N must be calculated. It is
defined by Cj; = dqi/ox}: The normal modes are then
obtained as the eigenvectors of the matrix Hf =
C - H*.CT. The eigenvectors can be transformed
back into mass-weighted Cartesian coordinates by
multiplying with CT.

Any complete set of coordinates will yield the same
normal modes. However, it is possible to leave out
some of the coordinates q;, which is physically equiva-
lent to keeping the corresponding degrees of freedom
fixed. After a transformation to internal coordinates,
for example, it is possible to eliminate bond and bond
angle coordinates, leaving only the dihedrals. This
results in a smaller matrix Hg, saving memory and
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CPU time, but the modes obtained in this way are
smaller in number and not identical to the modes
obtained from a full normal mode analysis. The goal
is to find the smallest subspace that reproduces the
low-frequency modes well enough. The most com-
monly used subspaces contain some combination of
dihedral angles. Some less common subspaces are
described in Brooks et al.11

In practice the matrix HF is calculated directly,
without first calculating the full Cartesian matrix
H*. There are several approaches for obtaining H3:
finite difference derivatives along the subspace basis
vectors (i.e., the columns of C), assembly from small
parts by multiplying the individual contributions to
H by the corresponding parts of C, or for short-range
force fields storage of H as a sparse matrix.

Fourier Basis

A dihedral angle subspace, even if limited to the
backbone dihedrals ¢ and , is still too large to be
used for big proteins. Eliminating more degrees of
freedom is possible in principle, but the choice is not
obvious and the effect on the modes difficult to
predict. Keeping large domains rigid is not a general
solution either, because the domains are not a priori
known. In addition, although it is common to speak
of “rigid” domain movement in low-frequency modes,
these domains are not strictly rigid; there is always
some overall deformation and intradomain move-
ment. Rigid domains should be viewed as a useful
description of protein dynamics rather than as the
basis for a mechanical model.

The first step in the construction of a more appro-
priate subspace for low-frequency mode calculations
is the realization that the basis vectors of the sub-
space are not coordinates but coordinate differen-
tials, i.e., each basis vector describes a direction, not
a position, in 3N-dimensional coordinate space. A
basis vector can therefore be regarded as a set of
atomic displacement vectors. A corresponding set of
coordinates does not have to be specified; it may not
even exist.

It is often useful to treat a set of atomic displace-
ment vectors as the values of a vector field, which is
defined everywhere in space, at the positions of the
atoms, i.e.,

d; = D(R)), (1)

where R; is the position of atom i and d; is its
displacement vector. Obviously, there is more than
one vector field D(r) corresponding to a given set of
displacement vectors d;, although the inverse rela-
tion is unique. Because the vector field D(r) has no
direct physical meaning, this is not a problem. If a
vector field is to be constructed from a set of displace-
ment vectors, e.g., for analysis or visualization, the
most reasonable choice is a field that varies smoothly
between the atoms.

A basis for normal mode calculations can thus be
obtained from a complete set of functions defined in a
region of space that includes the whole protein. An
appropriate function set for separating localized
from nonlocalized motions is a collection of sine and
cosine functions, defined in a rectangular box enclos-
ing the protein. Because this is an infinite function
set, a lower limit must be set for the wavelengths A to
be included. The shortest distance over which com-
pletely independent motion will be permitted by
such a basis is NM2. Obviously the smallest reason-
able wavelength is thus twice the smallest inter-
atomic distance; this would result in a basis equiva-
lent to the full Cartesian basis. A larger cutoff
wavelength leads to a smaller basis which still
includes the interesting low-frequency motions. Care
must be taken to avoid artifacts resulting from the
periodicity of the function set; the box enclosing the
protein must be larger than a minimal bounding box
by half the cutoff wavelength.

A precise specification of this normal mode sub-
space basis is given by the vector fields

BI(r) = w(x, k)w(y , kP )w(z, kP)e,  (2)

where e,, « = X, Y, z is a unit vector along one of the
three Cartesian axes and

sin (kx) fork <0

k) = 3
w(x, k) cos (kx) for k = 0. ®)
The wavenumbers are given by
2
k() = ——=n, @)

a

where n; is an integer and |, is the length of the
enclosing box along coordinate axis «. The total set of
wavenumbers to be used is defined by the condition

2T
\/mﬂ . (5)

min

To construct a set of basis vectors from the vector
fields BUJK(r), the first step is the conversion of each
vector field into a set of atomic displacement vectors
according to equation 1. Then three basis vectors
describing the global rotation of the protein are
added; this is advisable because the global rotation
of the protein is not well represented by a Fourier
basis unless the cutoff wavelength is very small. The
complete basis set is then converted to mass-
weighted coordinates and orthogonalized, e.g., by
singular value decomposition.

The scheme described above allows the construc-
tion of a normal mode basis for any system and with
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almost arbitrary size. It is therefore easily applicable
to other macromolecular systems as well.

Simplified Force Field

Because normal mode analysis requires the evalu-
ation of the potential energy and its first and second
derivatives for a single configuration only, the compu-
tational cost of this step is normally negligible.
However, the force field influences the total computa-
tional cost for a normal mode analysis indirectly: a
careful energy minimization is required before the
second derivative matrix is calculated. Depending on
the method used for calculating the second deriva-
tive matrix in the chosen basis set, other cost factors
may be given by numerical (finite difference) differen-
tiation and/or storage of the nonsparse Cartesian
second derivative matrix for long-range force fields.

Although a strong influence of force field details
(such as electrostatic cutoff) on the lowest vibra-
tional frequencies!® has been observed, it can be
expected that the distinction between low- and high-
frequency modes depends much more on the global
versus local character of the deformations than on
the precise functional form of the force field. It is
therefore reasonable to attempt a normal mode
analysis with a much simplified force field.

The functional form used in this work is

URy....Ry)= X Ui(R—-R) (6

all pairsii, j
with an harmonic pair potential
Ui(r) = k(R)(r [ - IR, 7

where R is the pair distance vector R; — R; in the
input configuration. In other words, the force field is
constructed on the basis of the assumption that the
input configuration corresponds to a local minimum.
An energy minimization is therefore not necessary,
but of course the input configuration must be physi-
cally reasonable, which can be assumed for struc-
tures obtained by X-ray crystallography or nuclear
magnetic resonance (NMR). The pair force constant
could be given by any function that decreases with
distance; for practical reasons the form

k(r) = c -exp

r|?
- ?) (8)

0

was chosen; the exponential decay allows the evalua-
tion with a cutoff not significantly larger than ry, and
the quadratic dependence on r eliminates the need
for a relatively expensive square root calculation.
The distance ro was set to 0.3 nm; this value gives the
best agreement for the low-frequency modes of lyso-
zyme with the Amber force field (this comparison will
be shown below). It does not have to be determined

accurately, because the normal modes do not depend
strongly on it. The value of ¢ is arbitrary, because it
causes only a uniform scaling of all vibrational
frequencies.

Initially, the force field described above seems
much too simple to describe proteins. It does not take
into account elemental features such as the bond
structure or the chemical elements of the atoms.
However, this force field will be applied only to
protein configurations that are known to be physi-
cally reasonable, e.g., crystallographic structures or
configurations obtained by modeling techniques. In
real protein configurations, the various energy terms
from a standard empirical force field correspond to
different interatomic distances (atoms linked by a
bond are closer than atoms that interact via a
dihedral angle term only), and the interaction
strength decreases with increasing distance. This
important feature is captured by the distance-
dependent force constant given in equation 8.

A simple harmonic force field similar to the one
presented here has been used by Tirion!” to repro-
duce the density of slow vibrational modes in pro-
teins. It uses a different distance dependence of the
pair force constant, namely a constant up to a certain
cutoff distance (which depends on the van der Waals
radii of the two atoms involved) and zero beyond that
distance. That choice reproduced the density of
modes well, but no comparison of the normal mode
displacements was shown. The pair force constant
given in equation 8 seems more realistic and is easier
to apply, because it depends on no specific atom
parameters.

Simplified Protein Model

Despite the reduction of memory and CPU time
requirements by use of a Fourier basis, the system
size is still severely limited by available memory.
The largest matrix that must be stored is usually the
set of basis vectors, whose size is M X 3N, where N is
the number of atoms and M is the number of modes
to be calculated. Reducing M by increasing \m;, leads
to less accurate modes. When A\, is already much
larger than typical interatomic distances, it is more
reasonable to reduce the amount of detail in the
protein model rather than increase the cutoff wave-
length.

An obvious simplified model for proteins consists
of one point mass per residue, located either at the
center of mass of the residue or at the C, position.
Such a model is sufficient to study backbone motion,
which in turn is sufficient to characterize the low-
frequency modes of large proteins. The main diffi-
culty with simplified protein models is the need to
construct an appropriate force field; for normal mode
analysis, however, the simplified force field de-
scribed in the previous section can easily be adjusted
to such models. For the residue point mass model,
the distance ry in equation was increased to 0.7 nm,
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the value that gives the best agreement for the
normal modes of ATCase (discussed below).

Such a model can be interpreted as representing
the potential of mean force as a function of the
residue positions. Obviously the real potential of
mean force is a much more complicated function, and
its form is essentially unknown. However, for the
purpose of characterizing domain motions, approxi-
mating the potential of mean force by a short-ranged
harmonic force field is no worse than using such an
approximation for the potential energy.

A harmonic protein model consisting of only the C,
positions has been used previously for a theoretical
prediction of the temperature factors obtained dur-
ing crystallographic structure determination.'® A
very good agreement with experiment was observed
but required a one-parameter fit for each specific
protein. Because temperature factors can also be
obtained from normal modes (but only under the
assumption that the harmonic approximation is
valid even for amplitudes corresponding to physiologi-
cal temperatures), this result adds support to the
suitability of simplified models for the description of
slow collective motions.

Analysis of Deformations

Once the normal modes have been calculated, the
physically relevant information must be extracted
from them. For analyzing domain motion, the most
important information is the location of relatively
rigid domains and of the more flexible regions be-
tween them. Rigid domains are characterized by the
absence of local deformations in the low-frequency
modes.

A useful measure for the amount of local deforma-
tion in continuous media is the energy density due to
the deformation as a function of position. A similar
guantity can be defined for a point mass system with
short-range interactions by distributing each energy
term among the atoms involved and summing up the
contributions for each atom. This quantity is particu-
larly simple for the pair interaction force field de-
scribed in the section, Simplified Force Field. The
energy contribution for atom i is given by

d; - d;) RO

E _Eik(R‘o))‘( ©)
T T R

where d; is the displacement of atom i in the mode to
be analyzed and k(r) is given by equation 8. A rigid
domain can be identified as a region in which the
values of E; are smaller than a suitably chosen limit.

Care must be taken when comparing deforma-
tional energies between different modes or different
proteins, because the E; depend on the amplitude of
the displacement. A suitable normalization must be
applied to ensure the comparability of the energies.
The normalization factor can be deduced from the

condition that the deformation measure for noninter-
acting identical copies of the system must be equal to
the original ones. This leads to the normalized
deformation measure

D,=—E, (10)

AL

j=1
Because the deformation measure is quadratic in the
atomic displacement, a meaningful combined defor-
mation measure for several normal mode vectors can
be obtained by averaging the values for each indi-
vidual mode.

The deformation analysis described in this section
is not limited to normal modes. With a small modifi-
cation, it can also be applied to other sets of atomic
displacement vectors, e.g., the difference of two
structures obtained experimentally. The modifica-
tion is necessary because such displacement vectors
describe finite configurational changes, whereas nor-
mal modes are infinitesimal ones. This difference is
important in the presence of rotations. A set of
displacement vectors describing a global rotation, for
example, would contain a combined rotation and
deformation when interpreted infinitesimally. Equa-
tion 9 must therefore be replaced by its finite displace-
ment analogue

1 N
B =5 2 KRPIIRY +di —dil - [RPI% (1)

Description of Domain Motions

Once the domains are identified as sufficiently
rigid regions in the protein, their motion in a speci-
fied normal mode can be described by a rigid-body
motion. The general form of an infinitesimal rigid-
body motion is

d=T+®XxR, (12)

The parameter T describes the translational contri-
bution and depends on the choice of the coordinate
origin. The parameter ® describes the direction of
the rotation axis and the rotational amplitude. Equa-
tion 12 describes the absolute motion of a domain
relative to a fixed coordinate system; the relative
motion between two domains is described by the
difference of the parameters T and ® obtained for
the two domains separately.

It can be shown that any rigid-body motion can be
decomposed into rotation around an axis and transla-
tion along this axis (see, for example, Goldstein?®).
The direction of this axis must obviously be given by
®; its position in space is defined by the condition
that points on the rotation axis must remain on it
during the rigid-body motion. One specific point on
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the rotation axis is then given by

O XT

Raxis = I 13)

The vector describing the translational motion along

the axis is

T -®
e

™ (24)

In practice, the domains are not exactly rigid, and
the parameters T and ® must be obtained by a
least-squares fit to equation 12. The calculation of
Raxis and T* then provides a useful description for
visualizing the rigid-body motion by a line that
represents at the same time the axis of rotation and
the direction of translation.

The exact set of atoms used in the fit should not
make an important difference if the domains have
been chosen from sufficiently rigid regions of the
protein, because the rigid-body parameters for all
parts of a rigid regions are obviously the same.
Repeating the fit with somewhat different domain
definitions is therefore a useful check to verify that
the domains have been chosen in a reasonable way.

RESULTS
Accuracy and Performance of the Normal
Mode Calculations

To explore the applicability of the methods pre-
sented in the previous section, three test systems
have been used. The smallest one is crambin, a small
protein consisting of 46 amino acids. Such a small
protein provides a good “worst case” for methods that
are designed for large proteins. The second test
system is lysozyme, a well-studied protein with two
domains and a characteristic hinge bending motion.
The third test system is ATCase, the largest protein
to which a standard normal mode analysis has been
applied until now.14

Most calculations were performed on an Hewlett-
Packard Vectra VA computer (PentiumPro at 200
MHz, 64 MB of RAM) running the Linux operating
system (Hewlett-Packard Company, Palo Alto, CA).
Only the full Cartesian normal mode analysis of
lysozyme had to be run on a larger machine due to
memory requirements; a Hewlett-Packard J282 (PA-
8000 processor at 180 Mhz, 512 MB of RAM) was
used. The programs are written in Python and C and
make use of the Molecular Modeling Toolkit
(MMTK)?® for standard tasks such as system con-
struction, minimization, and normal mode analysis.
The Amber 94 force field?® has been used as imple-
mented in MMTK; nonbonded interactions were
calculated without cutoff. All proteins were treated
in vacuum. Crambin (Protein Data Bank [PDB]
entry 1CBN) and turkey egg white lysozyme (PDB

entry 135L) were minimized up to a remaining
energy gradient of 10-*kJ/mol/nm using the conju-
gent gradient minimizer in MMTK. For the Fourier
basis normal mode calculations with the Amber 94
force field, the second-derivative matrix for the re-
duced subspace was evaluated by finite-difference
differentiation along the basis vectors to avoid stor-
ing the large Cartesian second-derivative matrix. For
the short-ranged simplified force field, the Cartesian
matrix was stored in the sparse matrix format imple-
mented in MMTK, and the reduced subspace matrix
was obtained by multiplication with the basis vectors.

Two sets of normal modes are compared by calcu-
lating the overlap matrix, which contains the scalar
products of each vector in the first set with each
vector in the second set,

where viand wiare the two sets of mass-weighted
mode vectors. If the two sets are identical, the result
is a unit matrix. For two similar but not identical
sets, there will be large values on and close to the
diagonal and small values elsewhere. To compare a
set of atomic normal mode vectors with a set of
residue-based normal mode vectors, each atomic
mode vector is transformed into a residue vector by
calculating the residue center-of-mass displace-
ments from the atomic displacements. The resulting
set of displacement vectors is no longer strictly
orthonormal, but a meaningful comparison requires
only one of the two vector sets to be orthonormal.
Because the graphical representation of such a
matrix is not always easy to interpret, it is useful to
define a simpler one-dimensional measure of similar-
ity. For two full sets of modes, the squares of the
scalar products add up to one along each direction.
They can therefore be considered a kind of “distribu-
tion,” and the width of this distribution indicates
over how many modes of the other set any given
mode is spread. The exact definition of the spread is

5 = \/Ejzoa- - (EJO?,—)Z, (16)
j j

in analogy to the definition of the standard deviation
of a probability distribution. When not all modes of
the set labelled by j are available, the overlaps in
equation 16 must be scaled to ensure that 3; OF = 1.

The spread indicates how many modes in one set
have a significant overlap with a specific mode in the
other set. For two identical sets of modes, the
overlaps Oj; are nonzero only for i = j, and the spread
becomes zero. For two totally unrelated sets of
orthogonal displacement vectors, all the overlaps O;;
are of the same order of magnitude, and the spread
grows with the number of modes. However, care
should be taken not to misinterpret this quantity.
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The “distributions” are not statistical distributions,
much less the commonly assumed Gaussian ones. A
large spread can indicate either many significantly
non-zero overlaps for a given mode or few non-zero
overlaps that are widely spaced. In both cases one
would speak of a bad agreement between the two
mode sets. Conversely, a small spread means that
there are few significant overlaps and that they
correspond to neighboring modes. This shows that
the spread is indeed a useful measure of similarity.

Small proteins: crambin

Crambin is a very small protein, consisting of a
single chain of 46 amino acids with a total of 642
atoms. It is too small to have recognizable domains
or domain motions; therefore, it can be considered a
“worst case” for the methods presented in this ar-
ticle, which were designed for large proteins. Cram-
bin is small enough to permit a full Cartesian normal
mode analysis, which took 40 minutes of CPU time.
Fourier basis normal mode analyses were performed
for various values of \in; the smallest for \,in = 1.6
nm used 96 mode vectors and took 3 minutes. For
comparison, adihedral subspace basis allowing varia-
tion of only the ¢- and {-angles was also used; this
basis consists of 100 vectors and is thus comparable
in size to the smallest Fourier basis.

Figure 1A shows an example of a full overlap
matrix, which compares the full Cartesian modes to
the Fourier basis modes at A\, = 1.2 nm, which is a
set of 246 modes. It is clear that the overlap matrix is
dominantly diagonal, but there are also significant
overlap values somewhat away from the diagonal.
Figure 1B shows the overlap for the first three
Cartesian modes in detail. A better quantitative
comparison can be obtained from Figure 2, which
shows the spread of each exact mode over the
Fourier basis modes, as defined in equation 16.
Figure 2A compares two Fourier basis mode sets of
different size and the ¢ — -angle basis modes. The
spread for all three sets is surprisingly similar; one
would expect a much smaller spread for a basis of
246 modes than for one of 96 modes. However, the
spread must decrease significantly as the number of
basis vectors grows, because it is zero for a full basis
(1926 modes in the case of crambin). Figure 2B
shows that this happens indeed, but suddenly around
a rather low value of \,j, =0.55 nm.

For another comparison, the full Cartesian modes
were calculated with the simplified force field de-
scribed in the section, Simplified Force Field; that
calculation required 27 minutes. Another set of
modes with the same force field and a Fourier basis
with A\min = 1.6 nm was obtained in 30 seconds.
Figure 2C shows the spread for these two mode sets.
There is little difference compared with the 1.6 nm
Fourier basis mode set obtained with the Amber 94
force field.

An explanation for the observed dependence of the
spread on the various approximations can be ob-
tained from the frequency spectrum of crambin,
shown in Figure 3. The most striking feature of this
spectrum (which is typical for proteins in general,
because the low-frequency modes that are character-
istic for a specific protein occupy only a very small
interval close to zero) is the absence of any modes in
the frequency interval from 55 THz to 85 THz (1800
cm~1 to 2800 cm~1). An analysis of the modes corre-
sponding to the two well-separated blocks shows
that the high-frequency modes are bond stretching
modes involving hydrogen atoms, whereas all other
modes fall into the lower frequency block, with bond
angle modes at the upper end of the spectrum. Bond
angle vibrations involve the relative motion of atoms
at distances of 0.15 to 0.25 nm, which would be
covered exactly by Fourier bases with A\, =0.4 nm
or less. The spread thus decreases sharply as soon as
the bases with decreasing A\, Start to describe bond
angle vibrations in detail. The bond stretching modes
are separated well enough in the frequency spectrum
that they can be considered independent of the other
motions. A similar observation is well known from
molecular dynamics simulations: bond stretching
modes can be eliminated by constraints without
changing the dynamics of the remaining degrees of
freedom significantly, but eliminating the bond angle
movements as well causes important modifica-
tions.2! However, this is no longer true for the
simplified force field, whose frequency spectrum
(scaled to make the highest frequencies of both
spectra equal) is also shown in Figure 3. This force
field is not sufficiently detailed to describe the dynam-
ics of a protein reasonably well at such small length
and time scales.

From a practical point of view, the results pre-
sented in this section show that if one is willing to
accept the accuracy of normal modes shown in
Figure 2A, then a small basis and a simplified force
field will yield an answer in a small fraction of the
time required for a full normal mode calculation. A
significantly better normal mode analysis requires a
computational effort that is close to that of a full
Cartesian calculation. It must also be kept in mind
that the Amber 94 force field used for the “exact”
calculation was not designed specifically for normal
mode analysis. Although it is more detailed than the
simplified force field and can therefore be expected to
yield normal modes that are closer to reality, there is
no way to quantify the expected accuracy of such
modes. There may therefore be no justification for
interpreting normal mode calculations beyond the
level of agreement established by Figure 2.

Medium size proteins: lysozyme

Lysozyme is a popular test case for studying
domain motions. It has two relatively rigid domains
connected by a more flexible hinge region. The hinge
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motion has been studied by both normal mode
analysis and molecular dynamics.® With 129 amino
acids and 1950 atoms, lysozyme is just small enough
to permit a full Cartesian normal mode analysis on a
well-equipped workstation.

Due to memory requirements, the full normal
mode calculation for lysozyme had to done on a

Fig. 1. A: The overlap matrix between the full Cartesian modes
and the Fourier basis modes of crambin, as defined in equation 15.
The Fourier basis was constructed with \.,i, = 1.2 nm, giving 264
modes. The row labeled “Total” indicates the projection of each
Cartesian mode on the subspace of the first 50 Fourier basis
modes. The square in the upper right corner shows the same
information in a different representation. White squares corre-
spond to high overlaps, and black squares correspond to low
values. Itis clear that high overlaps are preferentially located close
to the diagonal. B: The overlap of the first three exact modes in
detail. Each curve represents one column of the overlap matrix
shown in 1A.

different machine that is approximately three times
as fast as the machine used for the other calcula-
tions; on that machine it took 4.6 hours. For compari-
son, a Fourier basis with A\, = 1.2 nm yields 564
modes in 2.3 hours on the slower machine. With the
simplified force field shown in this article and the
same basis, the calculation could be completed in 22
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minutes. Using the simplified protein model shown
in this article and a Fourier basis with the same
cutoff (resulting in only 402 modes due to the smaller
model), the normal mode calculation took only 52
seconds. In addition, the last two calculations could
have been done without a prior lengthy energy
minimization.

The spread for all approximations (Fig. 4) is of
similar size and also close to the values for crambin.
Even the rather drastic model simplification from
1950 atoms to 129 point masses representing the
residues does not lead to a degradation of the similar-
ity of the low-frequency modes. It can be concluded
that the characterization of low-frequency modes
does not require a detailed description of the interac-
tions, but can be considered to be essentially a
structural property.

Large proteins: ATCase

ATCase is a large allosteric protein (2,760 resi-
dues) that exhibits large rearrangements of essen-
tially rigid domains during the allosteric transi-
tion.?? The first 53 normal modes of ATCase have
been calculated by Thomas et al.'* using a matrix
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Fig. 2. The spread (as defined in equation 16) of the full
Cartesian modes of crambin, calculated with the Amber 94 force
field, over modes calculated in various reduced subspaces. A: A
basis describing the ¢ — y-angle subspace, a Fourier basis of
approximately equal size, and a Fourier basis of approximately
twice the size of the other two bases. There is no clear difference in
the spread. B: Fourier bases ranging from small (246 modes) to
almost complete (1,878 modes). The spread decreases signifi-
cantly only for very large bases. C: Full Cartesian basis and
medium-size Fourier basis for the simplified force field. The spread
for the same Fourier basis with the Amber 94 force field, also
shown in 2A, is repeated for comparison. All approximations yield
approximately the same spread.

0.050 T

———— Amber 94 force field
---- simplified force field

0.040 - q

0.030
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I [N ‘
50.0
Frequency [THz]

0.000

Fig. 3. The density of vibrational frequencies for crambin,
calculated with the Amber 94 force field and the simplified force
field. The frequency spectrum of the simplified force field is simpler
and does not show the clear separation between hydrogen bond
stretching modes and all other modes that is characteristic of the
spectrum obtained with the Amber 94 force field.
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Fig. 4. The spread of the full Cartesian modes of lysozyme
over modes calculated in various approximations. All approx-
imations show approximately equal spread, which is even
approximately the same as the spreads for crambin shown in
Figure 2.

partitioning method?3; this calculation required 690
hours on a Cray C98 supercomputer. Using the
current simplified protein model with the point
masses located at the centers of mass of the residues,
and a Fourier basis with Ay, = 5 nm, 270 low-
frequency normal modes were obtained in 9 minutes.
A smaller set of 120 modes was calculated by choos-
iNg Amin = 7 Nm in 3 minutes. The same T state
configuration as in Thomas et al.}* was used to
ensure comparability. It describes a partial united-
atom model (only the polar hydrogen atoms are
represented explicitly) that was minimized with the
CHARMM force field.

Although ATCase is much larger than crambin
and lysozyme, the spread shown in Figure 5 is very
similar but in general somewhat smaller. Again the
influence of the size of the basis is weak, although
the larger basis yields a smaller spread for almost all
modes. The extremely similar behavior of the spread
over a wide range of system sizes permits the
hypothesis that approximate normal mode calcula-
tions have a universal accuracy that depends little
on system size and detail of the models. Because the
so-called “exact” model (classical point masses with
an empirical force field) is itself an approximation
whose accuracy for normal mode calculations is
essentially unknown, it is questionable whether the
results of any normal mode analysis can be inter-
preted beyond the level of precision at which all the
models tested here are equivalent.

Domain Analysis

The deformation analysis described in the section,
Analysis of Deformations, has been applied to the
two larger test cases, lysozyme and ATCase. The
results are shown in Figure 6. The colors indicate the
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Fig. 5. The spread of the full Cartesian modes of ATCase over
modes calculated with the simplified protein model described in
this article. Again, the spread does not depend strongly on the
approximation level and is of the same order of magnitude as for
crambin and lysozyme.

deformation, with a color scale ranging from blue
(small deformation) via green and yellow to red (high
deformation). The color scales for the two proteins
were derived independently and should not be com-
pared. For lysozyme, the deformation was calculated
as the sum of the contributions of the first four
modes (obtained with the Amber 94 force field and a
Fourier basis), because only those modes showed
predominantly interdomain motion. For ATCase the
first 15 modes (obtained with a 5 nm Fourier basis
and the simplified protein model shown in this
article) were used. In both cases, a small variation in
the number of modes does not lead to a visible
difference.

For lysozyme, it is immediately clear that there
are at least two domains, a small one at the left (with
residues 47-49 and 68-70 at the core) and a large
one at the right (defined by residues 12, 14, 22, 28,
112, and 117). These two domains are connected by a
more flexible region, with the most strongly de-
formed region close to the active site, between resi-
dues 44 and 109. The atomic displacements due to
the first normal mode are indicated in the figure by a
vector field representation. The first three modes
describe essentially rotations between the two do-
mains. The rotation axes corresponding to these
motions were obtained as described in Description of
Domain Motions (using the most rigid 60% of all
residues to define the domains) and are also shown
in Figure 6; the translational part of the movement
turns out to be negligible. Because the rotation axes
are almost perpendicular and almost intersect in a
single point (which lies within 4 A of the C, atoms of
residues 53, 54, and 58), the three first modes
essentially permit free rotation around this point.
This seems to contradict another recent study by
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Fig. 6. Deformation in lysozyme (top) and ATCase (bottom ).
The colors of the atoms and the backbone indicate the amount of
deformation in the first four (lysozyme) or six (ATCase) normal
modes; dark blue regions are the most rigid, whereas red regions
are strongly deformed. The color scale is different for the two
proteins. For lysozyme, the atomic displacement field correspond-
ing to the first mode is indicated by the yellow arrows. The
interdomain rotation axes of the first three modes are represented
by the colored cylinders in the order yellow, red, magenta. The
image was created using the MMTK toolkit,’® the visualization
program VMD, 2% and the rendering program POV-Ray.

Hayward et al.,” which finds only two rotational
degrees of freedom. These authors do not distinguish
between rigid and more flexible regions and instead
attempt to divide the whole protein cleanly into two
domains. It is to be expected that such an approach
leads to fewer modes describing interdomain motion.
The intersection point of the two rotation axes
obtained by Hayward et al. lies sufficiently close to
the one found here, such that the two analyses can be
considered to be essentially in agreement.

A similar picture produced from the full Cartesian
normal modes (not shown) differs essentially by a
smaller highly flexible region around the active site.

This means that the transition region between the
domains is smaller. Because the Fourier basis ex-
cludes sharp transitions between domains, this is
not surprising. However, the two domains are the
same. There are also three modes describing interdo-
main rotations, and their axes are similarly perpen-
dicular and intersect in one point, which is almost
identical to the one found from the Fourier basis
modes. However, the directions of the axes are
different, indicating that the three modes describing
interdomain motions, which are very close in fre-
quency, are different linear combinations than for
the approximate mode set. Ultimately, the conclu-
sions that can be drawn with any certainty from the
two mode sets are the same.

ATCase, being a much larger protein, shows a
more complicated domain structure. It is composed
of six regulatory chains, arranged in three dimers
that form the tips of the triangle, and six catalytic
chains, arranged in two dimers that form the core of
the molecule.?? Most of the bottom trimer is covered
by the top trimer in Figure 6. Structurally each
regulatory chain can be divided into an allosteric and
a zinc domain that are linked by a very flexible loop.
The catalytic chains can be divided into an aspartate
domain and a carbamyl phosphate domain; because
these domains are linked tightly by two helices, the
division is less evident. Figure 6 shows one large
rigid domain at the core of each trimer and a much
smaller rigid domain in the exterior parts of each
dimer. This is in agreement with a detailed analysis
of the first 53 full Cartesian modes by Thomas et al.*
In fact, a deformation analysis based on these modes
(not shown) does not show any clear difference from
Figure 6. A more detailed description of the domains
and domain motions in AT Case requires more sophis-
ticated analysis techniques than the simple rigid-
body fit used for lysozyme, because there are more
domains and more different motions for each do-
main. Moreover, the domains split into recognizable
subdomains in some higher modes. Suitable tech-
niques for the identification of such a domain hierar-
chy and the description of its motions will be pre-
sented in a separate article.

CONCLUSION

The main goal of this article has been the presenta-
tion and demonstration of several new methods for
analyzing domain motion in proteins. A general
subspace for calculating low-frequency modes has
been developed, and a simplified force field and
protein model have permitted a drastic reduction of
the computational resources that are required for a
normal mode analysis. Furthermore, a general tech-
nique for detecting rigid domains has been pre-
sented. Together these techniques transform normal-
mode-based dynamic domain analysis from a costly
technique reserved for important cases into a routine
technique that is easily applied by experimentalists
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and theoreticians to gain a first insight into the
low-frequency dynamics of a protein. An implementa-
tion of these techniques in the form of a ready-to-use
program is available from the author.

In addition to obvious practical benefits, the new
methods also provide new physical insight into the
nature of the potential energy surface of proteins
and the significance of normal mode calculations.
The fact that a drastically simplified force field,
which does not take into account fundamental prop-
erties such as atom type or bond structure, can
correctly identify low-frequency modes shows that
the distinction between low- and high-frequency
motion is essentially a structural property indepen-
dent of the details of atomic interactions.

This independence has several important implica-
tions for normal mode analysis. With standard force
fields, the existence of many distinct local energy
minima raises the question whether modes calcu-
lated for any one minimum can be considered typical
for all nearby minima. The simplified force field
varies smoothly with changes of the input configura-
tion, implying a smooth continuous change of the
normal modes. Because the simplified force field and
the Amber 94 and CHARMM 19 force fields lead to
normal modes that agree within a well-defined and
seemingly universal accuracy, it follows that the
variation of normal modes between nearby local
minima must stay within the same limits.

Moreover, the fact that the simplified protein
model is able to reproduce the low-frequency modes
of large proteins rather well explains why normal
mode analysis, despite its exploration of only a single
local energy minimum of the configurational space of
the system, can make meaningful predictions for the
system in its real physiological environment. Such
environments have temperatures at which entropic
effects are not negligible, and hence the relevance of
studying minima of potential energy is questionable.
Instead, the free energy as a function of slow vari-
ables should be analyzed. As explained in this ar-
ticle, the simplified protein model can in fact be
regarded as a crude approximation to the free energy
as a function of residue positions. Because such a
model produces essentially the same low-frequency
motions as an atomic model with a potential energy
surface, it can be concluded that the neglect of
entropic effects in standard normal mode analysis
has no important consequences as far as domain
motions are concerned.

The implication of these observations for the en-
ergy landscape of proteins is that the multiple local
minima of the potential energy in the subspace of
low-frequency motions and the corresponding
smoothed-out minima of the free energy profile must
have similar shape. This shape is essentially deter-
mined by the condition that deformations should be
limited to small regions and/or regions with a low

atom density, because a low atom density implies a
lower energetic cost of deformations.

The comparison of normal modes obtained with
various models and reduced subspaces has shown
that there is a seemingly universal level of precision
up to which all calculations produce the same result.
Agreement to a much greater precision could only be
obtained for almost identical descriptions. Because
none of the models ever used for normal mode
analysis of proteins can be claimed to be exact or
even significantly better than other models, the
practical conclusion is that no normal mode analysis
should be interpreted beyond the precision at which
all models yield the same results. However, this level
of precision is sufficient to identify domains and their
large-scale motions.
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