

Sequence Searches and Alignments

Andrea Schafferhans

Sequence searches

- Usage of heuristics -> acceleration
 - FASTA
 - BLAST
- Usage of profiles -> sensitivity
 - PSI-Blast
 - HH-Search (PSI-Blast profile -> HMMs)

Search tasks

Searches of the non-redundant sequence database (NR):

- Fasta
- Blast
- PSI-Blast using standard parameters with all combinations of
 - 3 iterations
 - 5 iterations
 - default E-value cutoff (0.005)
 - E-value cutoff 10E-6;
- HHsearch

Evaluate search results

- Compare result lists
 - Overlap?
 - distribution of %identity and scores (E-values)
- Standard of truth ?
 - Structures -> HSSP

Multiple alignments

- Building up alignments iteratively
 - ClustalW (traditional)
 - MUSCLE (performance!)
 - T-Coffee
- Incorporating additional information
 - T-Coffee (many types of alignment, 3D structures)
 - Cobalt (conserved domains, user constraints)

Multiple alignment tasks

- Take 20 sequences from the database search (with pdb!)
 - 99 90% sequence identity
 - 89 60% sequence identity
 - 59 40% sequence identity
 - 39 20% sequence identity
- Use different methods (possibly use 'time'):
 - Cobalt
 - ClustalW
 - Muscle
 - T-Coffee with
 - default parameters ("t_coffee your_sequences.fasta)
 - use of 3D-Coffee

Evaluate alignments

- Document the runtimes
- View e.g. in JalView -> export graphics
 - How many conserved columns?
 - Are functionally important residues conserved?
 - How many gaps?
 - Are there gaps in secondary structure elements?