
Sequence based mutation analysis

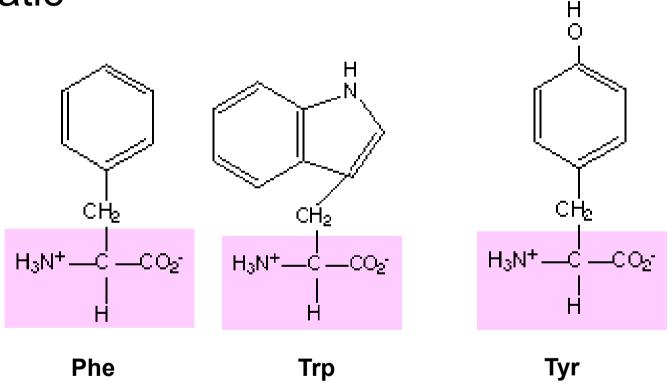
Carina Demel Eva Reisinger

Sequence based mutation Analysis

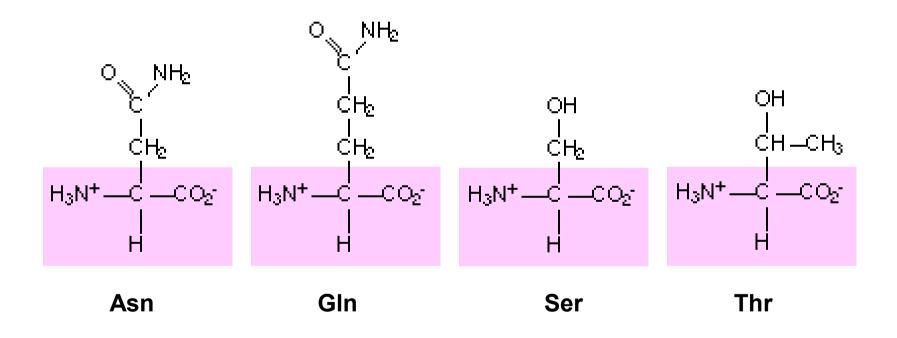
- Amino Acid Properties
- Substitution Matrices
- SNPs
- Polyphen
- SIFT
- SNAP
- Comparison

Amino Acids

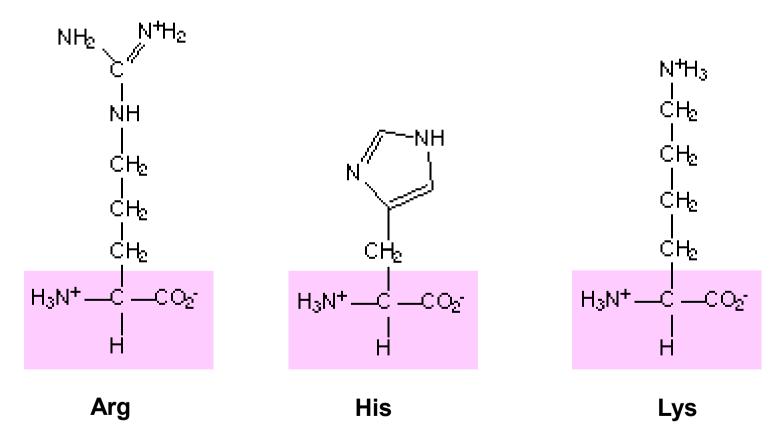
A alanine (ala) **R** arginine (arg) N asparagine (asn) D aspartic acid (asp) C cysteine (cys) Q glutamine (gln) E glutamic acid (glu) G glycine (gly) H histidine (his) I isoleucine (ile) L leucine (leu) K lysine (lys) M metioneine (met) F phenyalanine (phe) P proline (pro) S serine (ser) T threonine (thr) W trytophan (trp) Y tyrosine (tyr)

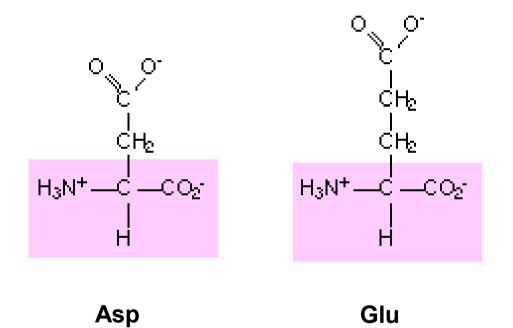

http://www.weightlossandnutritionsecrets.com/wp-content/uploads/2010/07/Amino-Acids-Chart.gif

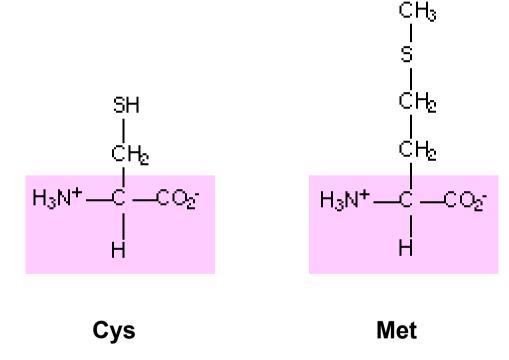
Carina Demel, Eva Reisinger

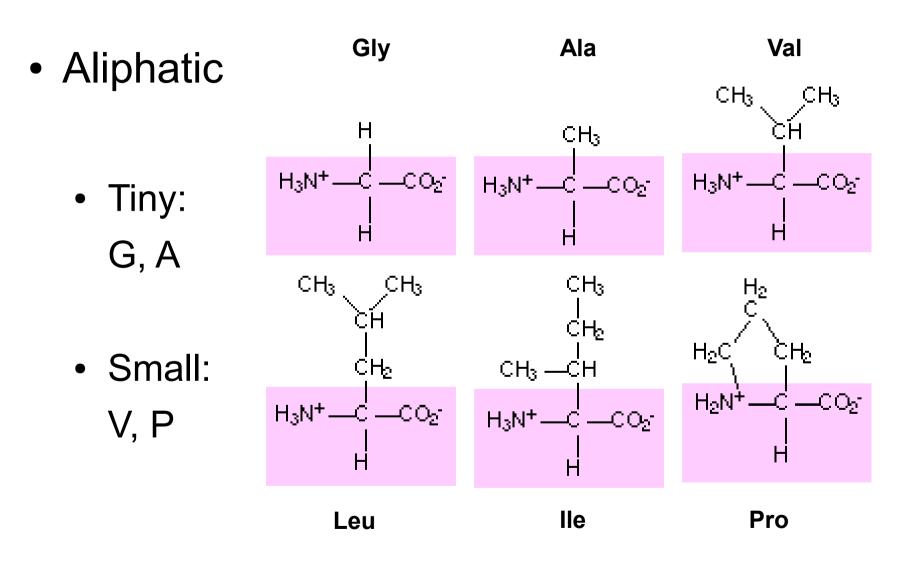

Sequence based mutation analysis

- Hydrophobic
 - Aromatic
 - Aliphatic
 - Sulphur containing
- Polar
 - Hydroxylic
 - Charged
 - Acidic
 - Positive (basic)

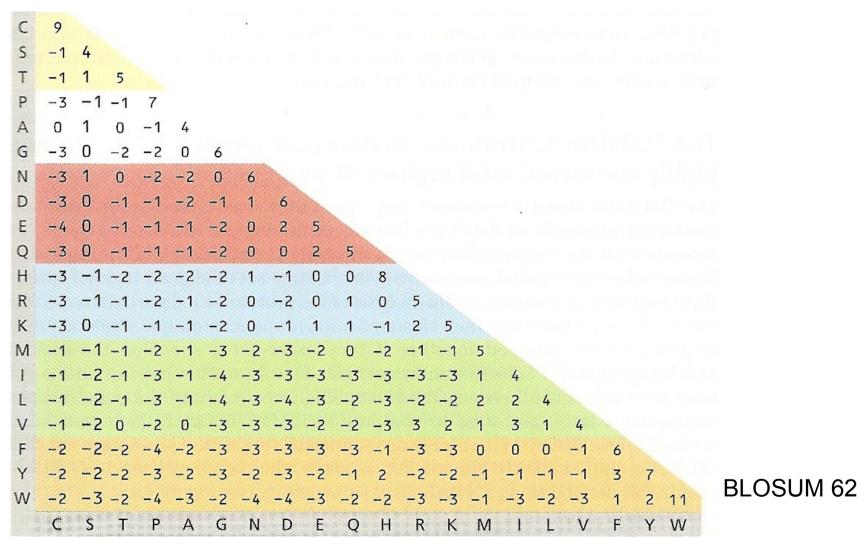

• Aromatic


• Polar/ Uncharged:


Positively Charged



Negatively Charged


Sulfur Containing

Sequence based mutation analysis

Substitution matrices

Carina Demel, Eva Reisinger

Sequence based mutation analysis

Substitution Matrices

- Reflect relative rate in which one AA changes to another AA during evolution
- Often symmetric
- Based on:
 - Chemical properties of AA
 - Empirical data (PAM, BLOSUM)

- Point Accepted Mutation- Matrix
- Margret Dayhoff, 1978
- Created by observing differences in closely related proteins
- Based on 71 protein families with 85% identical amino acids
- \rightarrow based on an evolutionary model
- Symmetric ($P(A \rightarrow B)=P(B \rightarrow A)$)

- Assumptions:
 - Mutations are independent
 - Substitutions are independent of their position in the sequence
- PAM1: rates for substitution if 1% of AA has changed \rightarrow 99% similarity
- PAM2 = PAM1 * PAM1
- PAM250: 250 mutations have been fixed per 100 residues: sequence similarity 20%

- Builing a 1-PAM matrix *M*:
 - List of accepted mutations
 - Probability of occurrence p_a for each amino acid *a* (in a large, sufficiently varied sequence set) $\sum_a p_a = 1$
- Assumptions:
 - Accepted mutations are undirected: $a \leftrightarrow b$
 - Mutations are immediate: $a \rightarrow b$ and not $a \rightarrow c \rightarrow b$

- From the list of accepted point mutations compute f_{ab}, the frequency of mutations a ↔ b
- Undirected mutations: $f_{ab} = f_{ba}$
- Total number of mutations of *a*: $f_a = \sum_{b \neq a} f_{ab}$
- Total number of aa occurances involved in mutations:

$$f = \sum_{a} f_{a}$$

 Relative mutability of a = probability that the given aa a will change in the evolutionary period of interest

 $m_a = \frac{number of changes}{number of occurances} = \frac{f_a}{p_a}$

- Aligned SequencesADAADB
- **Amino Acids** Α Β D Observed changes (f) 1 0 1 2 $m_a = \frac{f_A}{p_A} = \frac{1}{3} = 0.33$ 1 Frequency of occurrence (total) (p₂) 3 **Relative Mutability** 0.33 1 0
- Scaled to number of replacements of aa a $m_A = \frac{f_A}{100 f p_A}$ per 100 residues in the alignments

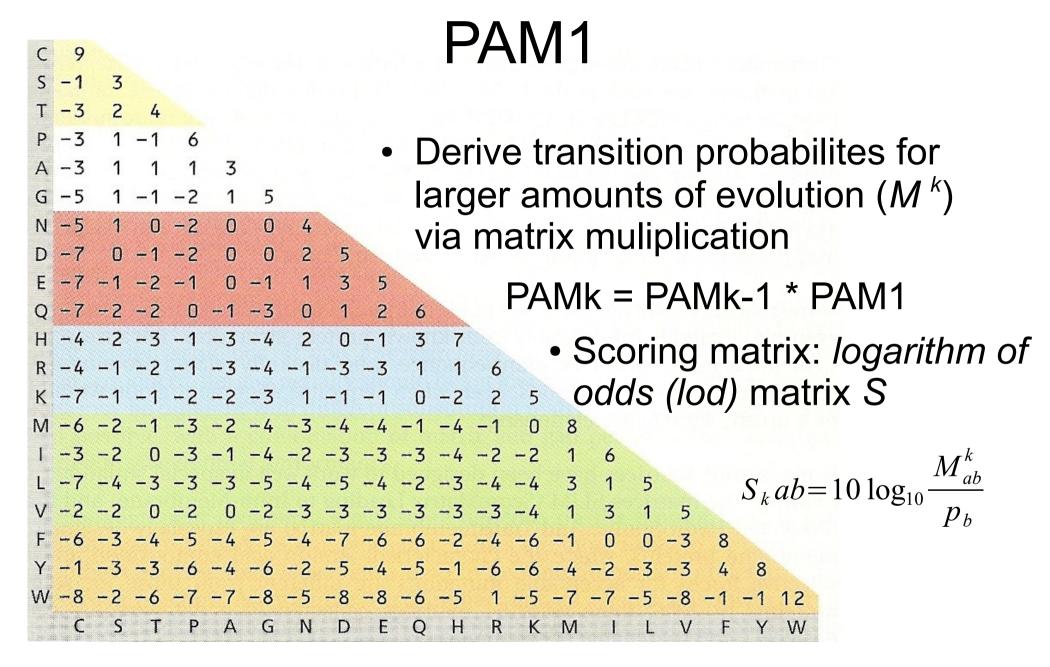
Carina Demel, Eva Reisinger

Relative mutability

Relative Mutabilities of the Amino Acids^a

			and the second se			
N	Asn	134	His		66	
mutable	Ser	120	Arg		65	
a	Asp	106	Lys	1	56	
5	Glu	102	Pro	5	56	
E	Ala	100	Gly	SS	49	
More	Thr	97	Tyr		41	
P	lle	96	Phe	2	41	
×	Met	94	Leu	7	40	
	Gln	93	Cys	mutabl	20	
	Val	74	Trp	0	18	

^aThe value for Ala has been arbitrarily set at 100.


- Most mutable: Asn, Ser, Asp, Glu
- Least mutable: Cys and Trp

- Probability of a remaining unchanged: $M_{aa} = 1 m_a$
- $M_{ab} = P(a \rightarrow b) = P(a \rightarrow b | a changed) * P(a changed) = \frac{f_{ab}}{f_a} m_a$
- Normalizing of $M_{_{aa}}$ and $M_{_{ab}}$ \rightarrow Transitionmatrix

		uu					u													
	Α	R	Ν	D	С	Q	Е	G	Н	Ι	L	Κ	Μ	F	Р	\mathbf{S}	Т	W	Υ	V
Α	9867	2	9	10	3	8	17	21	2	6	4	2	6	2	22	35	32	0	2	18
R	1	9913	1	0	1	10	0	0	10	3	1	19	4	1	4	6	1	8	0	1
N	4	1	9822	36	0	4	6	6	21	3	1	13	0	1	2	20	9	1	4	1
D	6	0	42	9859	0	6	53	6	4	1	0	3	0	0	1	5	3	0	0	1
C	1	1	0	0	9973	0	0	0	1	1	0	0	0	0	1	5	1	0	3	2
Q	3	9	4	5	0	9876	27	1	23	1	3	6	4	0	6	2	2	0	0	1
E	10	0	7	56	0	35	9865	4	2	3	1	4	1	0	3	4	2	0	1	2
G	21	1	12	11	1	3	7	9935	1	0	1	2	1	1	3	21	3	0	0	5
- Н	1	8	18	3	1	20	1	0	9912	0	1	1	0	2	3	1	1	1	4	1
1	2	2	3	1	2	1	2	0	0	9872	9	2	12	7	0	1	7	0	1	33
L	3	1	3	0	0	6	1	1	4	22	9947	2	45	13	3	1	3	4	2	15

Carina Demel, Eva Reisinger

Sequence based mutation analysis

Carina Demel, Eva Reisinger

Sequence based mutation analysis

BLOSUM

- BLOcks Substitution Matrix
- Henikoff & Henikoff 1992
- Based on ungapped local alignments = blocks
- Block ≈ conserved region of a protein family
- BLOSUM62 based on blocks with 62% sequence identity

BLOSUM

- 1. Deriving a frequency table from blocks
 - Count all possible pairs in each column of each block $\rightarrow f_{ab}$
- 2. Calculate a Logarithm of Odds (lod) Matrix
 - Obs probability of occurance for each pair $a, b \rightarrow q_{ab} = f_{ab} / \sum_{a=1}^{20} \sum_{b=1}^{a} f_{ab}$
 - Exp probability of *a*th aa in an a, *b* pair is:

$$p_a = q_{aa} + \frac{\sum_{b \neq a} q_{ab}}{2}$$

Carina Demel, Eva Reisinger

Sequence based mutation analysis

...A..

$$f_{AS} = 9$$

 $q_{AA} = \frac{36}{45} = 0.8$

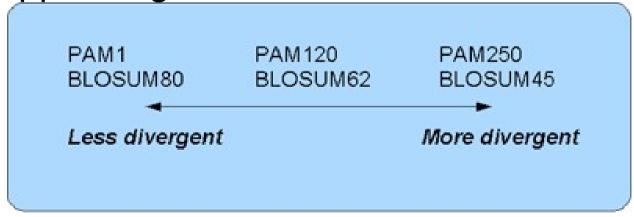
$$q_{AS} = \frac{9}{45} = 0.2$$

$$p_{A} = \frac{36 + \frac{9}{2}}{45} = 0.9$$
$$p_{S} = \frac{\left(\frac{9}{2}\right)}{45} = 0.1$$

BLOSUM

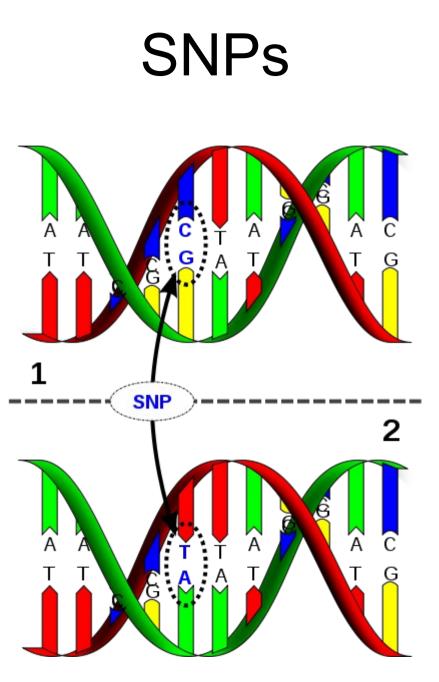
- Exp probability of occurance for each *a,b* pair: $e_{ab} = p_a * p_b$ for a = b $e_{ab} = p_a * p_b + p_b * p_a$ for $a \neq b$
- Odds ratio matrix

each entry: q_{ab}/e_{ab}

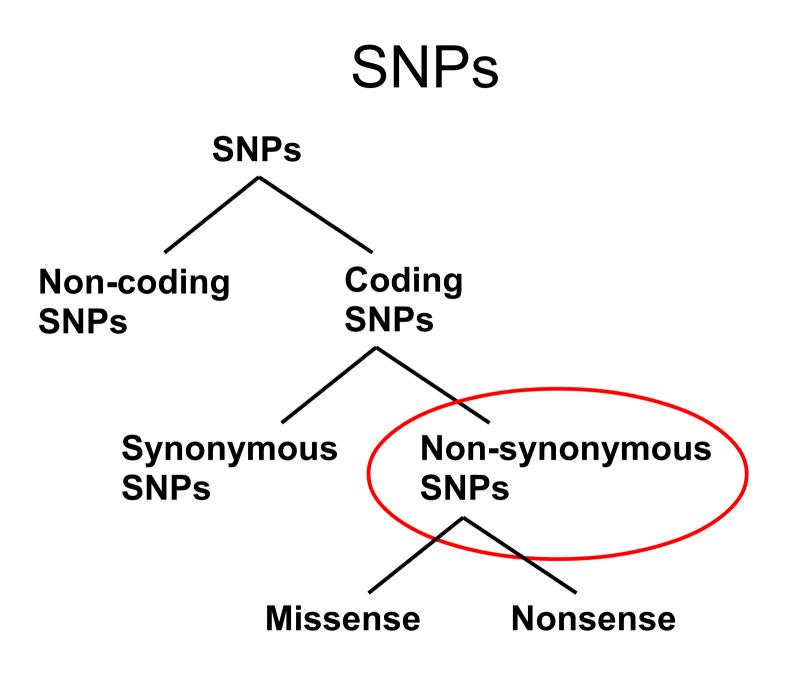

 $e_{44} = 0.9 * 0.9 = 0.81$ $e_{4S} = 2 * (0.9 * 0.1)$ $e_{AA} = 0.1 * 0.1 = 0.01$

• Lod ratio: $s_{ab} = \log_2(q_{ab}/e_{ab}) \rightarrow \text{multiplied by}$ scaling factor, rounded $\rightarrow \text{Scoring matrix}$ observed frequencies as expected: $s_{ab} = 0$ less than expected: $s_{ab} < 0$ more than expected: $s_{ab} > 0$

PAM vs BLOSUM


- PAM: basted on explicit evolutionary model, BLOSUM: based on protein families
- PAM: based on mutations observed in a global alignment, with highly conserved and mutable regions.

BLOSUM: based on highly conserved regions in local ungapped alignments



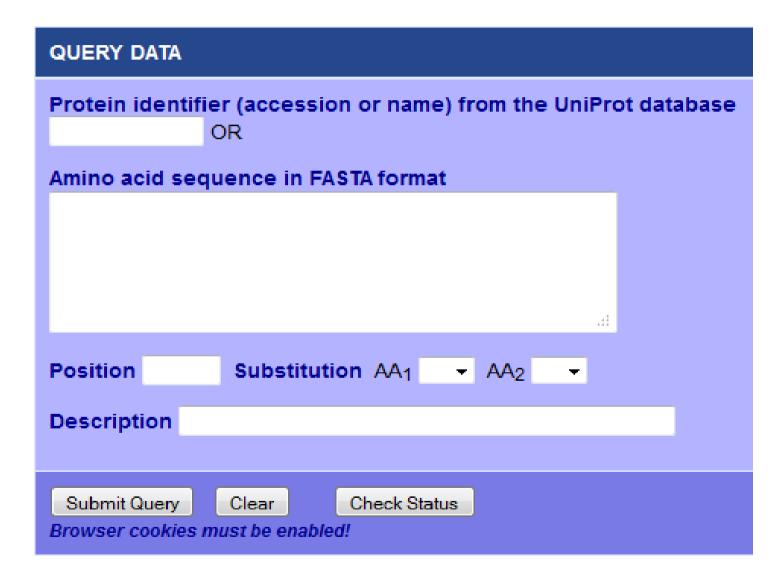
SNPs

- Single Nucleotide Polymorphism
- DNA sequence variation
 - between members of a biological species or
 - paired chromosomes in an individual
- Located in coding regions, non-coding regions and intergenic regions

Sequence based mutation analysis

SNP databases

- DbSNP
- SNPedia
- OMIM
 - SNPs \rightarrow diseases
- Human Gene Mutation Database
 - SNPs, human inherited diseases \rightarrow gene mutations

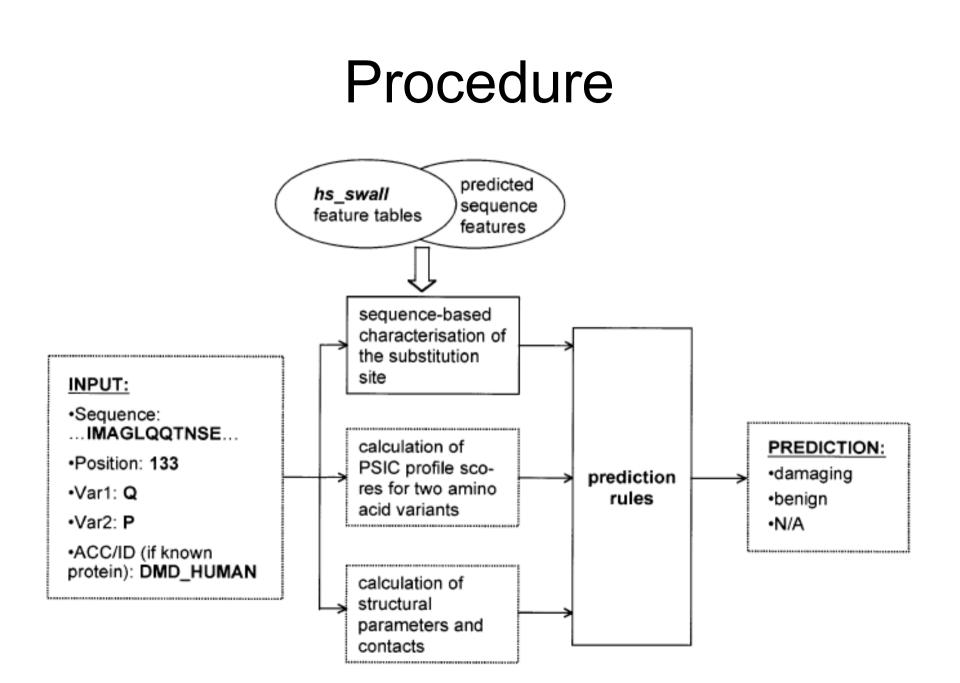

PolyPhen

- Background
- Input
- Procedure
- Prediction
- Output
- PolyPhen2

Background

- PolyPhen (=*Poly*morphism *Phen*otyping)
- Automated tool
- Predicts possible impact of an amino acid substitution on the structure and function of a human protein
- Uses straightforward empirical rules which are applied on the information characterizing the substitution

Input



Input

QUERY OPTIONS						
Structural database	● PQS ○ PDB					
Sort hits by	Identity O E-value					
Map to mismatch	No O Yes					
Calculate structural parameters	For first hit only OF For all hits					
Calculate contacts	○ For first hit only					
Minimal alignment length	100					
Minimal identity in alignment	0.5					
Maximal gap length in alignment	20					
Threshold for contacts	6 Å					

Procedure

- Sequence-based characterisation of the substitution site
- Calculation of PSIC profile scores for two amino acid variants
- Calculation of structural parameters and contacts

Sequence-based characterisation of the substitution site

- Search query protein in hs_swall (human proteins subset of UniProt)
- Checks where the substitution is located (different annotations in hs_swall)
- Substitution in an annotated or transmembrane region?
 - → Uses **PHAT** (transmembrane-specific substitution matrix) score to evaluate possible functional effect of a nsSNP

Calculation of PSIC profile scores for two amino acid variants

- BLAST to identify homologues of the input
- Retain hits that have
 - Sequence identity of 30- 94%
 - Length of Alignment > 50
- PSIC software (Position-Specific Independent Counts) to calculate a profile matrix

Calculation of PSIC profile scores for two amino acid variants

- Computes difference between profile scores in the polymorphic position
- Big difference
 - \rightarrow Substitution is yet rarely or never observed
- Shows the number of aligned sequences at the query position
 - → Used to assess the reliability of profile score calculations

Calculation of structural parameters and contacts

- Mapping of the substitution site to known protein **3D structures** with BLAST
- Structural parameters like secondary structure, phi-psi dihedral angles...
 → Some are taken from DSSP

Contacts

 \rightarrow May reveal the role of a residue for the protein function

Prediction

- Bases on 4 main sources:
 - Sequence annotation describing the substitution position
 - Sequence prediction
 - Multiple alignment
 - Structure

Prediction

- Probably damaging
 - → With high confidence supposed to affect protein function or structure
- Possibly damaging \rightarrow Supposed to affect protein function or structure
- Benign

 \rightarrow Most likely lacking any phenotypic effect

- Unknown
 - \rightarrow No prediction possible

Output

- 3 main sections
 - Query \rightarrow mostly resembling the input
 - Prediction
 - Details
 - Sequence features of the substitution site
 - PSIC profile scores for two amino acid variants
 - Structural parameters and contacts

Output

Query												
Acc num	nber	Position	AA ₁	AA ₂	Descript	iption						
2104034	1	176	С	Y .1 hemochro			matosis protein isoform 3 precursor; hereditary haemochromatosis protein [Homo sapiens]					
Prediction												
This variant is predicted to be probably damaging												
Predicti	on Av	ailable c	lata	Predi	ction bas	sis Sub	stitution effec	ct	Prediction data			
•	probably FT damaging alignment			alignment		N/A	N/A		PSIC score difference: 2.943			
Details												
PSIC PROFILE SCORES FOR TWO AMINO ACID VARIANTS												
Score1	Score	2 Scor	e1-S	core2	Observ	ations	Diagnostics	M	ultiple alignment arou	und sub	bstitution position	
+2.415	-0.528	.528 2.943 9		9		precomputed	Se	equences: all 👻 Flar	nks: 25	Show alignment		
MAPPING OF THE SUBSTITUTION SITE TO KNOWN PROTEIN 3D STRUCTURES												
Database Initial number of structures		tures N	Number of structures									
PQS	709		0	0								

PolyPhen-2

- Comparison with PolyPhen
 - Similarities
 - Input
 - Procedure
 - <u>Differences</u>
 - Prediction
 - Uses Naïve Bayes classifier to predit the functional significance of a substitution
 - 2 datasets were used to train and test prediction models
 - HumDiv
 - HumVar

SIFT

- Background
- Input
- Procedure
- Output

Background

- Sorts intolerant from tolerant amino acid substitutions (=SIFT)
- Sequence homology-based
- Predicts whether an amino acid substitution in a protein will have a phenotypic effect
- Based on the premise that protein evolution is correlated with protein function

Input

- NCBI GI/ RefSeq ID
 - → Predictions are based on pre-computed BLAST searches and are returned within a minute
- Protein sequence
 - \rightarrow FASTA format
 - → The entire SIFT procedure will be executed and results will be returned to you
 - \rightarrow Slow

Input

- Group of related sequences
 - \rightarrow FASTA format
 - \rightarrow Skip the first two steps of SIFT

 \rightarrow Fast

Multiple alignment

 → CLUSTAL, MSF, or FASTA format
 → The first three steps are skipped
 → Very fast

Procedure

- Get related sequences
 - → With PSI-BLAST
- <u>Choose closely related sequences</u>
 - Build sequence groups with >90% identity
 - Make consensus sequences for each group
 - Find conserved reagions between query seq. and consensus seq. with MOTIF
 - Extract conserved regions from sequences aligned by PSI-BLAST

Procedure

- Build a checkpoint file with the conserved regions of the query seq and the consensus seqs.
- Search in the consensus seq the remaining conserved regions with PSI-BLAST
- Add the top hit to the alignment in the checkpoint file → calculate the conservation score
- Rebuild the checkpoint file
 - \rightarrow Until: The score is under a threshold
 - The score decreases

Procedure

- <u>Obtain alignment</u>
 - From the initial PSI-BLAST search results
- <u>Calculate probabilities</u>
 - For each amino acid to be at this specific postion

Output

- SIFT Predictions for Substitutions
 - SIFT Score
 - Median Info
 - Seqs at Position
- Genome Tool Output
- Single Protein Output
 - A table of probabilities
 - Predictions for each position

SIFT Predictions for Substitutions

- SIFT Score
 - Score <= $0.05 \rightarrow$ damaging
 - Score > $0.05 \rightarrow$ tolerated
- Median Info
 - Measure for the diversity of the sequences used for prediction
- Seqs at Position
 - Number of sequences that have an amino acid at the position of prediction

Single Protein Output

A table of probabilities

pos A C D E F G H I K L M N P Q R S T V W Y 9I 0.750.710.120.390.680.350.360.300.811.000.870.240.420.280.540.760.580.580.940.020.39

• Predictions for each position

Predict Not Tolerated Position Seq Rep Predict Tolerated cwdfmiyvgpshnalte 7Q 0.95 K Q R

nonpolar, uncharged polar, basic, acidic.

- Screening for non-acceptable polymorphisms
- Neural network based
- Prediction about the functionality of a mutated protein

- Input: protein sequence & substitutions (XposY)
 - *Y: Substitute all residues in sequence by Y (scan)
 - Pos*: substitute the residue in position pos by all other residues
 - X*Y: subsitute all residues X in sequence by Z

- Functional/structural annotations beneficial
- Derived in silico protein information
 - Evolutionary information (residue conservation within sequence families)
 - Protein structure (secondary structure, solvent accessibility)

•

- Classifies all nsSNPs in all proteins into
 - Neutral (no effect)
 - non-neutral (effect on function)
- Provides Reliability Index (level of confidence of a particular prediction)

SNAP

Input sequence

MVNSTHRGMHTSLHLWNRSSYRLHSNASESLGKGYSDGGCYEQLFVSPEVFVTLGVISLL ENILVIVAIAKNKNLHSPMYFFICSLAVADMLVSVSNGSETIVITLLNSTDTDAQSFTVN IDNVIDSVICSSLLASICSLLSIAVDRYFTIFYALQYHNIMTVKRVGIIISCIWAACTVS GILFIIYSDSSAVIICLITMFFTMLALMASLYVHMFLMARLHIKRIAVLPGTGAIRQGAN MKGAITLTILIGVFVVCWAPFFLHLIFYISCPQNPYCVCFMSHFNLYLILIMCNSIIDPL IYALRSQELRKTFKEIICCYPLGGLCDLSSRY

Input substitutions

R7H, S30F, E100A

```
Result of SNAP prediction
```

Yana Bromberg & Burkhard Rost NAR (2007)

```
# Query : dict_h19775
```

nsSNP	Prediction	Reliability	Expected Accuracy
R7H	Neutral	5	89%
S30F	Non-neutral	4	82%
E100A	Non-neutral	3	78%

Sequence based mutation analysis

Comparison

 Test on a subset of the PMD database (Sub-PMD)

SNAP	SIFT	PolyPhen
69.5 ± 0.4	70.6 ± 0.5	67.8 ± 0.5
79.9 ± 0.4	73.6 ± 0.5	73.5 ± 0.5
48.3 ± 0.6	55.9 ± 0.6	48.9 ± 0.7
41.0 ± 1.1	36.0 ± 1.0	29.7 ± 1.1
70.9 ± 0.4	NR	NR

Sub-PMD data set

- MCC (Matthew's correlation coefficient) \rightarrow quality
- ROC AUC \rightarrow Performanz

References/Sources

- Dayhoff, M. O.; Schwartz, R. M.; Orcutt, B. C. (1978). "A model of evolutionary change in proteins". Atlas of Protein Sequence and Structure 5 (3): 345–352
- A. Churbanov, PAM matrix for BLAST algorithm, 2002
- S. Henikoff and J. G. Henikoff, Amino acid substitution matrices from protein blocks. Proc Nat Acad Sci 89(22):10915–10919, 1992
- Yana Bromberg and Burkhard Rost, SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Research, 2007, Vol. 35, No. 11 3823-3835
- http://genetics.bwh.harvard.edu/pph/
- http://genetics.bwh.harvard.edu/pph/snps_server_and_survey.pdf
- http://swift.cmbi.ru.nl/gv/dssp/
- http://genetics.bwh.harvard.edu/pph2/
- http://sift.jcvi.org/
- http://sift.jcvi.org/www/SIFT_help.html#SIFT_OUTPUT_SUBST
- http://www.cs.tau.ac.il/~ruppin/mud.pdf