SEQUENCE-BASED MUTATION ANALYSIS

Sonja Waldraff

25.6.2013

PREDICTION TOOLS

- Most common tools predict effect of single nucleotide polymorphisms (SNPs)
- SIFT
- o PolyPhen2
- SNAP
- MutationTaster

SIFT SORTING INTOLERANT FROM TOLERANT SUBSTITUTIONS

• Input:

- FASTA sequence
- SNP amino acid exchange, i.e. N61D (N is mutated to D at position 61)
- Method: "Multistep procedure"
 - Searches for similar sequences
 - Chooses closely related sequences that may share similar function → multiple alignment of these chosen sequences
 - Calculates normalized probabilities for all possible substitutions at each position from the alignment
 - Based on BLOSUM Matrix
 - Every substitution below a given cutoff is assumed to be deleterious

SIFT - SCORING

- Score ranges from 0 to 1:
 - Damaging with a score <= 0.05
 - Tolerated with a score > 0.05
- Score evaluation
 - **Median Info** ranges from 0 to 4.32 (= log_2 20)
 - Ideally between 2.75 and 3.25
 - To measure the diversity of the sequences used for prediction
 - Warning, if MI > 3.25 → indicates that the prediction was based on closely related sequences
 - Seqs at Position:
 - Number of sequences with an amino acid at the predictionposition
 - At beginning or end of a protein sometimes only few sequences are represented

SIFT - N61D

Prediction

- Substitution at pos 61 from N to D is predicted to AFFECT PROTEIN FUNCTION with a score of 0.03.
- Median sequence conservation: 3.01
- Sequences represented at this position:77

POLYPHEN2 — POLYMORPHISM PHENOTYPING VERSION 2

- Input:
 - Protein ID, SNP ID or FASTA sequence
 - Needs position and substitution (AA₁ & AA₂)
- Better than SIFT and SNAP

POLYPHEN2 - COMBINATION OF SEQUENCE-BASED AND STRUCTURE-BASED FEATURES

POLYPHEN2

• Two trained datasets:

• HumDif:

- to evaluate rare alleles at loci potentially involved in complex phenotypes, dense mapping of regions found with GWAS and analysis of natural selection
- "probably damaging": [0.957,1]
- "possibly damaging": [0.453,0.956]
- "benign": [0,0.452]

• HumVar:

- to distinguish mutations with drastic effect from other human variation, including mildly deleterious alleles (diagnostic of Mendelian diseases)
- o "probably damaging": [0.909,1]
- "possibly damaging": [0.447,0.908]
- "benign": [0,0.446]

POLYPHEN2-EXAMPLE (N61D)

• HumDif:

• This mutation is predicted to be benign with a score of **0.029** (sensitivity: **0.95**; specificity: **0.82**)

• HumVar:

- This mutation is predicted to be benign with a score of **0.087** (sensitivity: **0.91**; specificity: **0.67**)
- Multiple sequence alignment and 3D visualizations are available

SNAP SCREENING FOR NON-ACCEPTABLE POLYMORPHISMS

- neural network to predict SNP effects
- Uses different features like
 - psi-blast frequency profile
 - PSIC scores (position specific independent counts)
 - Structure prediction:
 - relative solvent accessibility prediction (PROFace)
 - secondary structure prediction (PROFsec)
 - predicted residue flexibility (PROFbval)
 - Pfam information, SwissProt annotations ...
- Looks at the environment of the SNP (window of five amino acids)
- Better than SIFT and PolyPhen, especially on tough cases

SNAP

- Input: Fasta-Sequence
- Amino acid substitution and position like Sift: (AA₁PosAA₂)
- Output:
 - Divides between neutral and non-neutral
 - Reliability Index 0(low) 9(high):
 - reflects level of confidence of prediction
 - higher RI indicates better accuracy, but lower coverage

)	nsSNP	Prediction	Reliability Index	Expected Accuracy
	N61D	Non-neutral	1	63%

MUTATIONTASTER

- o Input:
 - HGNC gene symbol, NCBI Gene ID, Ensembl gene ID
 - Possible to analyse SNPs, insertions and deletions
 - Nucleotide substitutions and its position
- Analyses, if an amino acid is changed or not
- Method:
 - Integrates information from different biomedical databases and uses analysis tools
 - three different prediction models:
 - 'silent' synonymous or intronic alterations (without_aae)
 - single amino acid(simple_aae)
 - complex changes in the amino acid sequence (complex_aae)

N61D - A181G

- Prediction
 - disease causing
 - Model: simple_aae
 - prob: 0.999999901823
- MutationTaster performed best in terms of accuracy and speed (according to their paper)

Thank your for your attention!

Any questions?

REFERENCES

- A method and server for predicting damaging and missense mutations
- SNAP: predict effect of non-synonymous polymorphisms on function. Yana Bromberg and Burkhard Rost Nucleic Acids Research, 2007, Vol. 35, No. 11 3823-3835 (PubMed)
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. Nat Methods 7(4):248-249 (2010)
- Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nature Protocols 4, 1073 1081 (2009)
- Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. *Nat Methods*. 2010 Aug;7(8):575-6.
- Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11: 863–874.
- http://swift.cmbi.ru.nl/teach/Wageningen/IMAGE/aa venn diagram.p
 ng, 15.6.13