From Protein Prediction 2 Winter Semester 2014
Revision as of 16:00, 24 November 2014 by Ppwikiuser (talk | contribs) (Existing visualisations)

RNA Microarray

Introduction RNA


From Wikipedia, the free encyclopedia

"A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). Note that this is a single strand of RNA that folds back upon itself.

Ribonucleic acid (RNA) is a polymeric molecule. It is implicated in a varied sort of biological roles in coding, decoding, regulation, and expression of genes. DNA and RNA are nucleic acids, and, along with proteins and carbohydrates, constitute the three major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA it is more often found in nature as a single-strand folded unto itself, rather than a paired double-strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information (using the letters G, A, U, and C to denote the nitrogenous bases guanine, adenine, uracil and cytosine) that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression, or sensing and communicating responses to cellular signals. One of these active processes is protein synthesis, a universal function whereby mRNA molecules direct the assembly of proteins on ribosomes. This process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) links amino acids together to form protein".

The Microarray

Existing visualisations

Common RNA/DNA Visualization example.

Tool's Objective


  • Understand the RNA Data.
  • Try to compact the data.
  • Create a prototype
  • Test the prototype
  • Ask for improvements and feedback.
  • Restart the prototyping -> developing -> testing cycle.
  • Upload the final version to BIOJS.